Rotational Clamshell Casting In Three Dimensions

Prosenjit Bose, Pat Morin, Michiel Smid, Stefanie Wuhrer *
School of Computer Science
Carleton University
Ottawa, Ontario, Canada
\{jit, morin, michiel, swuhrer\}@scs.carleton.ca

Abstract

A popular manufacturing technique is clamshell casting, where liquid is poured into a cast and the cast is removed once the liquid has hardened. We consider the case where the object to be manufactured is modeled by a polyhedron with combinatorial complexity n of arbitrary genus. The cast consists of exactly two parts and is removed by a rotation around a line in space. The following two problems are addressed: (1) Given a line of rotation l in space, we determine in $O(n \log n)$ time whether there exists a partitioning of the cast into exactly two parts, such that one part can be rotated clockwise around l and the other part can be rotated counterclockwise around l without colliding with the interior of P or the cast. If the problem is restricted further, such a partitioning is only valid when no reflex edge or face of P is perpendicular to l, the algorithm runs in $O(n)$ time. (2) An algorithm running in $O\left(n^{4} \log n\right)$ time is presented to find all the lines in space that allow a cast partitioning as described above. If we restrict the problem further and find all the lines in space that allow a cast partitioning as described above, such that no reflex edge or face of P is perpendicular to l, the algorithm's running time becomes $O\left(n^{4} \alpha(n)\right)$.

1 Introduction

The problem of whether a given object modeled by a polyhedron can be manufactured using the casting process is a well studied problem in computational geometry. The following overview of related problems is not extensive. For a detailed discussion of problems related to manufacturing processes considered in computational geometry, the reader is referred to Bose [4], Bose and Toussaint [8], and the Handbook of Discrete and Computational Geometry by Goodman and O'Rourke [14].

We are concerned with the geometric setting of clamshell casting outlined below.
Assume that we wish to manufacture an object modeled by a polyhedron P with combinatorial complexity n. Let the boundary of P be the cast of P. Two problems are addressed. First, given a line of rotation l in space, we determine whether there exists a partitioning of the cast into exactly two parts, such that one part can be rotated clockwise around l and the other part can be rotated counterclockwise around l without colliding with the interior of P or the cast. We present an algorithm to solve this problem with running time $O(n \log n)$. If we restrict the problem further and determine whether such a partitioning is possible when no reflex edge or face of P is

[^0]perpendicular to l, the algorithm runs in $O(n)$ time. Second, an algorithm is presented to find all the lines in space that allow a cast partitioning as described above. The algorithm's running time is $O\left(n^{4} \log n\right)$. Again, we can restrict the problem further and find all the lines in space that allow a cast partitioning as described above, such that no reflex edge or face of P is perpendicular to l. The algorithm's running time is $O\left(n^{4} \alpha(n)\right)$ in that case, where $\alpha(n)$ is the inverse Ackermann function.

To our knowledge, this problem has not been considered in the past, but the problem was stated as an open problem in different publications [4, 5, 21]. The equivalent two-dimensional problem has been considered by Bose et al. [7]. Furthermore, the analogous three-dimensional translational casting problem, where the two parts of the cast are removed using a translation has been studied extensively in both two and three dimensions.

There exists a close relationship between rotational casting and translational casting. Let P denote a polyhedron and let l denote the axis of rotation. Assume that P and l are given in a cylindrical coordinate system with l as z-axis. Transform the coordinate system into a cartesian coordinate system, such that the x-axis describes the angle ϕ, the y-axis describes the distance d, and the z-axis stays fixed. Considering this transformed system between $x=0$ and $x=2 \pi$ shows the transformed cylindrical coordinate system. It is not hard to see that every point of the cast of P moves along a straight line when the cast is removed. This means that rotational casting becomes translational casting. It remains to analyze the shape of the transformed polyhedron \tilde{P}. Without loss of generality (since everything can be rotated), assume that P does not contain vertical edges or faces. Furthermore, assume that l does not intersect the interior of P, since otherwise, P could not be cast using l as axis of rotation. The transformation of a face f of P is in essence a curve describing the distance of points on the face to the origin. The distance from a face to a point is non-linear and can not be described using an algebraic surface, but trigonometric functions are necessary [3]. Since l does not intersect the interior of P, the transformed polyhedron \tilde{P} is topologically equivalent to P and its boundary consists of piecewise non-algebraic surface patches. Considering rotational casting of a polyhedron P is equivalent to considering translational casting of the transformed polyhedron \tilde{P}.

To our knowledge, this close relationship between rotational casting and translational casting has not previously been mentioned or used to obtain algorithms to rotationally cast polygons or polyhedra. None of the algorithms surveyed in the following can easily be extended to handle translational castability of 3 -dimensional objects bounded by piecewise non-algebraic surface patches.

Different approaches exist to examine the three-dimensional version of the casting problem, where the object to be manufactured is modeled by a polyhedron in space with combinatorial complexity n and the polyhedron's boundary is used as cast and removed by translations. Ahn et al. [2] determine whether the cast can be partitioned into exactly two pieces, such that both pieces can be removed from the manufactured object by translations in opposite directions without breaking the object or the cast. They consider two problems: the first problem is to decide whether a given object is castable with respect to a given cast removal direction and the second problem is to find a valid removal direction for a given object in case that one exists. Ahn et al. give sufficient and necessary conditions for translational castability of objects bounded by algebraic surface patches that meet along algebraic curves. However, algorithms to determine castability only work for polyhedra. For a polyhedron of combinatorial complexity n, they present algorithms to solve the first problem in time $O(n \log n)$ and to solve the second problem in expected time $O\left(n^{4}\right)$. They also prove that their algorithm can not be extended to allow arbitrary cast removal directions, i.e.
non-opposite directions. Before Ahn et al. found an analytic solution to this problem, Hui and Tan [16] developed a heuristic method to solve the problem. They choose candidate removal directions heuristically and test for a sample of points located on the boundary of the polyhedron whether the points can be removed in that direction. Ahn et al. [1] solve the two above-mentioned problems using randomized algorithms in a setting, where the direction for cast removal is uncertain. This setting is important in practice, since the control of the casting machinery is imperfect.

Note that the 3-dimensional problems considered here are closely related to the problems considered by Ahn et al. in [2]. The 3-dimensional decision problem for translational casting considered by Ahn et al. corresponds to the 3 -dimensional decision problem addressed in this paper. The problem of determining all the valid removal directions considered by Ahn et al. corresponds to the problem of determining all valid casting lines in space addressed in this paper. Since Ahn et al. propose algorithms that handle opposite cast removal only, the space of solutions is the space of all possible directions, i.e. the unit sphere of directions, and therefore 2-dimensional. The problem we address considers full lines. Hence the space of all solutions is the space of all possible lines in 3D and therefore 4-dimensional. Note that despite of these two additional degrees of freedom, the algorithms we present are only slightly less efficient than the algorithms proposed by Ahn et al.

Bose et al. [5] consider an object modeled by a simple polyhedron with n vertices and use the polyhedron's boundary as cast. They determine whether the cast can be partitioned into two pieces by a plane, such that both pieces can be removed from the manufactured object by translation without breaking the object or the cast. If this is the case, the object can be manufactured by sand casting. A simple algorithm to decide whether a simple polyhedron with n vertices can be manufactured by sand casting running in time $O\left(n^{2} \log n\right)$ is provided. The running time of the algorithm can be improved to $O\left(n^{\frac{3}{2}+\epsilon}\right)$, for any fixed $\epsilon>0$, by using complicated data structures. Furthermore, the running time of the algorithm becomes $O\left(n^{2}\right)$ in case that the cast removal directions are opposite directions.

Section 2 introduces the notation and preliminaries used throughout this paper. Section 3 discusses the problem of finding a partitioning of a given cast based on a given line of rotation, and Section 4 discusses the problem of finding all of the combinatorially distinct lines in space that allow a valid partitioning of the cast. Finally, Section 5 concludes and gives ideas for future work.

2 Preliminaries

Define a polyhedron P of arbitrary genus as a closed, compact, connected subset of \mathbb{R}^{3} bounded by a piecewise linear surface. Let $\operatorname{int}(P)$ and ∂P denote the interior and boundary of P, respectively, so that $P=\operatorname{int}(P) \cup \partial P$. The boundary is also called the cast of P. Two faces are adjacent if they share at least one edge. Parallel adjacent faces are not allowed, since this can be easily avoided by merging the two adjacent parallel faces. Let n denote the combinatorial complexity of P. The aim is to rotationally remove the cast of P in two pieces. We specify below precisely what this means.

Definition 1. Let l be a directed line in 3-dimensional space. Consider the plane π perpendicular to l passing through a point p of P. Denote the intersection point of π and l by $l^{\prime}(p)$. Denote the circular arc with center $l^{\prime}(p)$ and angle α starting at p winding in clockwise (cw) or counterclockwise (ccw) direction by $\operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right)$ or $\operatorname{ccwarc}\left(l^{\prime}(p), p, \alpha\right)$ respectively. A face f of P is called removable in $c w$ orientation with respect to l if $\exists \alpha>0$ such that $\forall p$ on f

$$
\operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right) \cap \operatorname{int}(P)=\emptyset
$$

and removable in ccw orientation with respect to l if $\exists \alpha>0$ such that $\forall p$ on f

$$
\operatorname{ccwarc}\left(l^{\prime}(p), p, \alpha\right) \cap \operatorname{int}(P)=\emptyset .
$$

The cw and ccw orientation is measured with respect to the orientation of line l.
The cw or ccw orientation is then called a valid orientation for cast removal for f with respect to l respectively, and l is called a valid casting line for f.

Definition 2. Let l be a directed line in 3-dimensional space. A polyhedron P is rotationally castable with respect to l, if ∂P can be partitioned into exactly two non empty connected components P_{1} and P_{2}, such that all faces of P_{1} are removable in cw orientation with respect to l, all faces of P_{2} are removable in ccw orientation with respect to $l, \exists \alpha>0$ such that $\forall p \in P_{1}$

$$
\operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right) \cap \operatorname{int}\left(P_{2}\right)=\emptyset,
$$

and $\exists \alpha>0$ such that $\forall p \in P_{2}$

$$
\operatorname{ccwarc}\left(l^{\prime}(p), p, \alpha\right) \cap \operatorname{int}\left(P_{1}\right)=\emptyset .
$$

The last two conditions of the definition ensure that the two components P_{1} and P_{2} (which partition the boundary of P) do not obstruct each other's rotational paths. Figure 1 shows part of a polyhedron that is decomposed into P_{1} and P_{2}. Although ∂P can be decomposed into P_{1} and P_{2}, such that P_{1} is removable in cw orientation and P_{2} is removable in ccw orientation, the two components can not be rotated infinitesimally, because they obstruct each other. In the following, the notations rotationally castable and castable are used interchangeably. Note that the partitioning of the polyhedron is not necessarily at edges of P.

。 l
Figure 1: The components P_{1} and P_{2} obstruct each other's rotational paths.
Let $p \in \partial P$ be a point incident to k reflex edges $e_{i}, 1 \leq i \leq k$ and s faces $f_{i}, 1 \leq i \leq s$. Denote the direction of e_{i} by $\vec{d}\left(e_{i}\right)$ and the inner normal of f_{i} by $\vec{n}\left(f_{i}\right)$.
Definition 3. Let l be a directed line in 3-dimensional space in direction \vec{l}. A polyhedron P is robustly castable with respect to l, if P is rotationally castable with respect to l,

$$
\begin{gathered}
\forall p \in \partial P: \vec{d}\left(e_{i}\right) \cdot \vec{l} \neq 0,1 \leq i \leq k, \text { and } \\
\forall p \in \partial P: \vec{n}\left(f_{i}\right) \times \vec{l} \neq \mathbf{0}, 1 \leq j \leq s
\end{gathered}
$$

where \cdot denotes the dot product of two vectors and \times denotes the vector product of two vectors.

The last two conditions of the definition ensure that no face or reflex edge of P is perpendicular to l.

If P is robustly castable with respect to l, we say l is a valid robust casting line for P. The definition implies that P is robustly castable with respect to a line l if P is castable with respect to l and no reflex edge or face of P is perpendicular to l. However, there can still exist a point of ∂P that slides along the boundary of P when the cast parts are removed. Hence, the definition does not correspond to the intuitive definition of robust, where the limited precision of the casting machinery used to manufacture an object is taken into account. Therefore, the definition of robust castability does not imply that surface defects are less likely to occur in robust casting than in general casting. Although the definition of robust castability does not offer this advantage, it ensures that algorithms to determine robust castability of a polyhedron are more efficient than algorithms to determine general castability of a polyhedron.

The following sections discuss both the robust casting process and the general casting process.

3 Decision Problem

In this section, we address the problem of determining whether a polyhedron P with combinatorial complexity n is castable with respect to a given line of rotation and present an algorithm that solves the problem in $O(n \log n)$ time. In case we want to determine if P is robustly castable, the algorithm's running time becomes $O(n)$.

Let P be a polyhedron and let l be a line in space. The problem can be decomposed into three subproblems: determining the valid orientation for cast removal for all faces of P with respect to l, checking whether all the faces removable in cw and ccw orientation with respect to l form a connected component of P, respectively, and testing whether the two components can be infinitesimally rotated around l without colliding.

3.1 Robust rotational casting

This section presents an algorithm to test whether a polyhedron P is robustly castable with respect to a line l in space in $O(n)$ time.

Definition 4. Let f be a face of P and denote its inner normal by \vec{n}. Define the open unbounded prism $S(f)=\{\vec{p}+t \vec{n}: p \in f$ and $t \in \mathbb{R}\}$. Denote $S^{+}(f)=\{\vec{p}+t \vec{n}: p \in f$ and $t>0\}$ and $S^{-}(f)=\{\vec{p}+t \vec{n}: p \in f$ and $t \leq 0\}$, see Figure 2.

In a first step, the algorithm determines whether any reflex edge or face of P is perpendicular to the given line l. This test requires constant time per reflex edge or face, respectively, and therefore $O(n)$ total time. If any reflex edge or face of P is perpendicular to l, P is not robustly castable with respect to l, by definition. Otherwise, we determine the valid orientation for cast removal for each face of P. In the following, we can therefore assume that no reflex edge or face of P is perpendicular to l.

The following lemma characterizes all locations from which a face is removable.
Let f be a face of P with inner normal \vec{n} and let l be a line in direction \vec{l} with $\vec{n} \times \vec{l} \neq \mathbf{0}$. If $l \cap S(f)=\emptyset$, compute a point $p \in \partial f$ that minimizes the Euclidean distance between ∂f and l. If p is not unique, the set of points on ∂f with minimal distance from l are located on an edge of ∂f parallel to l and an arbitrary point p of that set is picked. Denote by τ the plane with normal $\vec{n} \times \vec{l}$

Figure 2: The prisms $S^{+}(f)$ and $S^{-}(f)$.
passing through p and by p^{*} the point p translated by $\vec{n} \times \vec{l}$. Denote the open half space induced by τ containing p^{*} by τ^{+}and the open half space induced by τ not containing p^{*} by τ^{-}. The following lemma characterizes all locations from which a face is removable.

Lemma 1. For the orientation for cast removal of f, the following four cases are possible:

1. The face f is removable from the cast using only a $c w$ orientation around l, if and only if $l \cap$ $S(f)=\emptyset$ and $l \in \operatorname{cl}\left(\tau^{-}\right)$.
2. The face f is removable from the cast using only a ccw orientation around l, if and only if $l \cap S(f)=\emptyset$ and $l \in \operatorname{cl}\left(\tau^{+}\right)$.
3. The face f needs to be partitioned into two or more parts along the orthogonal projection of l on f, if and only if $l \cap S^{+}(f)=\emptyset$ and $l \cap S^{-}(f) \neq \emptyset$. One or more parts of f are removable using $a c c w$ rotation and the other ones using a $c w$ rotation around l.
4. The face f is not removable from the cast, if and only if $l \cap S^{+}(f) \neq \emptyset$.

Proof. Consider the plane π perpendicular to l passing through a point p of P. Denote the intersection point of π and l by $l^{\prime}(p)$. Every point p of f moves on $\operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right)$ or $\operatorname{ccwarc}\left(l^{\prime}(p), p, \alpha\right)$ when rotated around an angle α around l. Denote the vector from p to $l^{\prime}(p)$ by $\overrightarrow{l^{\prime}}(p)$ and the vector $\vec{l} \times \overrightarrow{p l^{\prime}}(p)$ by $\overrightarrow{p l^{\prime}}(p)^{\perp}$. For any p not incident to the perpendicular projection of l on f, infinitesimal movements along $\operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right)$ or $\operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right)$ correspond to infinitesimal movements along the vector $\overrightarrow{p l^{\prime}}(p)^{\perp}$ or $-\overrightarrow{p l^{\prime}}(p)^{\perp}$ respectively. Hence, only translations need to be considered.

Let p be an arbitrary point in the interior of f. There exists an open ball b with positive radius centered at p with the property that exactly half of b is contained in $\operatorname{int}(P)$ and exactly half of b is contained in the exterior of P. Denote the ray starting at p propagating in direction $\overrightarrow{p l^{\prime}}(p)^{\perp}$ by q^{+} and denote the ray starting at p propagating in direction $-\overrightarrow{p^{\prime}}(p)^{\perp}$ by q^{-}.

Let $l \cap S(f)=\emptyset$, let $l \in c l\left(\tau^{-}\right)$, and let p be an arbitrary point in the interior of f. The intersection $b \cap q^{+}$is located completely outside of $\operatorname{int}(P)$. Hence, p can move infinitesimally along $\overrightarrow{p l^{\prime}}(p)^{\perp}$ without penetrating $\operatorname{int}(P)$. Infinitesimal movements along $\overrightarrow{p l^{\prime}}(p)^{\perp}$ correspond to infinitesimal movements along $\operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right)$ and hence, $\exists \alpha>0$ such that $\forall p$ on $f: \operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right) \cap$ $\operatorname{int}(P)=\emptyset$. The intersection $b \cap q^{-}$is completely contained in $\operatorname{int}(P) \cup p$ and hence, p can not move infinitesimally along $-\overrightarrow{p^{\prime}}(p)^{\perp}$ without penetrating $\operatorname{int}(P)$. Since infinitesimal movements along $-p \overrightarrow{l^{\prime}}(p)^{\perp}$ correspond to infinitesimal movements along $\operatorname{ccwarc}\left(l^{\prime}(p), p, \alpha\right)$, there is no $\alpha>0$ such
that $\forall p$ on $f: \operatorname{ccwarc}\left(l^{\prime}(p), p, \alpha\right) \cap \operatorname{int}(P)=\emptyset$. Hence, f is only removable using a cw orientation around l.

Let $l \cap S(f)=\emptyset$, let $l \in \operatorname{cl}\left(\tau^{+}\right)$, and let p be an arbitrary point in the interior of f. The intersection $b \cap q^{-}$is located completely outside of $\operatorname{int}(P)$. Hence, p can move infinitesimally along $-\overrightarrow{p^{\prime}}(p)^{\perp}$ without penetrating $\operatorname{int}(P)$. Infinitesimal movements along $-\overrightarrow{l^{\prime}}(p)^{\perp}$ correspond to infinitesimal movements along $\operatorname{ccwarc}\left(l^{\prime}(p), p, \alpha\right)$ and hence, $\exists \alpha>0$ such that $\forall p$ on f : $\operatorname{ccwarc}\left(l^{\prime}(p), p, \alpha\right) \cap \operatorname{int}(P)=\emptyset$. The intersection $b \cap q^{+}$is completely contained in $\operatorname{int}(P) \cup p$ and hence, p can not move infinitesimally along $\overrightarrow{p l^{\prime}}(p)^{\perp}$ without penetrating $\operatorname{int}(P)$. Since infinitesimal movements along $\overrightarrow{p l^{\prime}}(p)^{\perp}$ correspond to infinitesimal movements along $\operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right)$, there is no $\alpha>0$ such that $\forall p$ on $f: \operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right) \cap \operatorname{int}(P)=\emptyset$. Hence, f is only removable using a ccw orientation around l.

If $l \cap S^{+}(f)=\emptyset$ and $l \cap S^{-}(f) \neq \emptyset, f$ is divided into two faces along the perpendicular projection l^{\prime} of l on f by inserting one or more edges e. Denote the set of faces contained in $\operatorname{cl}\left(\tau^{-}\right)$by F_{1} and the set of faces contained in $c l\left(\tau^{+}\right)$by F_{2}. For arbitrary $f_{1} \in F_{1}$ and $f_{2} \in F_{2}$, the points on e globally minimize the distance between $\partial f_{1}, \partial f_{2}$ and l respectively. Hence, f_{1} is removable using a cw orientation around l and f_{2} is removable using a ccw orientation around l. Note that F_{1} and F_{2} contain exactly one face each for every convex face f.

If $l \cap S^{+}(f) \neq \emptyset$, consider an arbitrary point p located on the orthogonal projection of l on f. The point p can not be rotationally removed from the cast, i.e. there is no $\alpha>0$ such that $\operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right) \cap \operatorname{int}(P)=\emptyset$ or $\operatorname{ccwarc}\left(l^{\prime}(p), p, \alpha\right) \cap \operatorname{int}(P)=\emptyset$. Therefore, f is not removable with respect to l.

This determines the removability of f depending on the location of l in 3 -dimensional space. Hence, the four statements of Lemma 1 follow directly.

Lemma 1 classifies all faces of P into four categories. In linear time, all the faces of P can be categorized. If any face of P is not removable with respect to l, P is not castable with respect to l. Otherwise, the aim is to determine if the boundary of P can be decomposed into two connected components. In particular, the faces of P that need to be split (faces of type 3 in Lemma 1) need to be examined more carefully as outlined in the following lemma.

Lemma 2. Let P be a polyhedron with combinatorial complexity n and let l be a line in space. All the faces f of P with $l \cap S^{+}(f)=\emptyset$ and $l \cap S^{-}(f) \neq \emptyset$ can be partitioned along the orthogonal projection of l on f and labeled as removable in $c w$ or $c c w$ orientation with respect to l respectively in $O(n)$ time.

Proof. Consider a single face f with $l \cap S^{+}(f)=\emptyset$ and $l \cap S^{-}(f) \neq \emptyset$. Lemma 1 states that f needs to be partitioned along the orthogonal projection of l on f. If we denote the number of vertices of f by r, f is partitioned into $O(r)$ faces, because every edge of f is split at most once. Assume that f is stored using a doubly-connected edge list. The $s \leq r$ points on ∂f, where f needs to be split can be found ordered by their appearance on f in $O(r)$ time by traversing the edges of f [12]. Using the algorithm by Hoffmann et al. [15], it is possible to order the points with respect to their appearance on the projected line in time $O(r)$. Denote the points on ∂f, where f needs to be split ordered with respect to their appearance on the projected line by q_{1}, \ldots, q_{s}. Note that s is even, because every edge that is added to f has two endpoints and no two new edges share a vertex. Adding the edges with endpoints q_{1} and q_{2}, q_{3} and q_{4}, \ldots, q_{s-1} and q_{s} partitions f along the orthogonal projection of f on l. Once the new edges and their intersection points with f are known, it takes time $O(m)$ to insert the new edge into the doubly-connected edge list, where m is the number of edges adjacent to the new edge [12]. In the worst case, $O(r)=O(n)$ and $O(m)=O(n)$.

Next, we analyze the running time for splitting all of the faces f with $l \cap S^{+}(f)=\emptyset$ and $l \cap S^{-}(f) \neq \emptyset$ of P. Since every edge e of P has two adjacent faces, e needs to be split at most twice. This ensures that the total number of new edges is $O(n)$. Also, the total number of edges adjacent to the new edges is $2 n=O(n)$. The reason is that each original edge of P is adjacent to at most two new edges. Hence, all of the faces can be split in $O(n)$ total time. Each of the newly created faces can be labeled as removable in cw or ccw orientation with respect to l, respectively, in constant time. Therefore, it takes $O(n)$ time to partition all the faces of P with $l \cap S^{+}(f)=\emptyset$ and $l \cap S^{-}(f) \neq \emptyset$ and to find the valid orientation with respect to l for each of the newly created faces.

This yields the conclusion that all the faces of a polyhedron P with combinatorial complexity n can be labeled as removable in cw, ccw, or no orientation with respect to a line of rotation l in $O(n)$ total time.

The next step is to determine if those labels on the faces admit a decomposition of ∂P into two connected components. The following lemma allows this test to be done in linear time:

Lemma 3. Given a partitioning of ∂P into two components P_{1} and P_{2}, such that all faces of P_{1} are removable in cw orientation with respect to l and all faces of P_{2} are removable in ccw orientation with respect to l, we can determine whether P_{1} and P_{2} are connected respectively in time $O(n)$.

Proof. To test whether all the faces of P_{1} and P_{2} form connected components, consider two undirected graphs: graph G_{1} induced by the faces in P_{1} and graph G_{2} induced by the faces in P_{2}. Next, a depth-first search (DFS, see [11]) is performed on G_{1} and G_{2} respectively. The faces in P_{1} and P_{2} are connected, respectively, if and only if the depth-first forests of G_{1} and G_{2} consist of exactly one tree each. This implies that non-connected polyhedra are not castable with respect to any line. The running time for this algorithm is in the order of the sum of all the edges and vertices of the two undirected graphs, and hence $O(n)$.

The final step is to determine whether P_{1} can be rotated infinitesimally in cw orientation with respect to l without colliding with P_{2} and whether P_{2} can be rotated infinitesimally in ccw orientation with respect to l without colliding with P_{1}. The definition of robust castability of P implies that P is robustly castable if and only if the rotations are possible.

Lemma 4. Given a partitioning of ∂P into two connected components P_{1} and P_{2}, such that all faces of P_{1} are removable in cw orientation with respect to l and all faces of P_{2} are removable in ccw orientation with respect to l, we can test whether $\exists \alpha>0$ such that $\forall q$ on P_{1}

$$
\operatorname{cwarc}\left(l^{\prime}(q), q, \alpha\right) \cap \operatorname{int}\left(P_{2}\right)=\emptyset,
$$

and $\exists \alpha>0$ such that $\forall q$ on P_{2}

$$
\operatorname{ccwarc}\left(l^{\prime}(q), q, \alpha\right) \cap \operatorname{int}\left(P_{1}\right)=\emptyset
$$

in time $O(n)$.
Proof. Each edge contained in the set of cycles C consisting of edges and vertices of P that separates P_{1} from P_{2} can be found in linear time by testing for each edge of P whether it is adjacent to both a face removable in cw orientation with respect to l and a face removable in ccw orientation with respect to l. The statement of Lemma 4 is true iff every point in C can rotate infinitesimally in
cw (respectively ccw) orientation with respect to l without penetrating P_{2} (respectively P_{1}). As C consists of non intersecting simple polygonal cycles on P, it is sufficient to test all the vertices of C. Denote the intersection of the plane π perpendicular to l passing through a vertex p of C with l by $l^{\prime}(p)$. Rotations of p with respect to l in 3 -dimensional space correspond to rotations of p with respect to $l^{\prime}(p)$ in π. Previously, Bose et al. [7] examined rotational castability of simple polygons in two dimensions. An edge e of a polygon R with interior $\operatorname{int}(R)$ and boundary ∂R is removable in $c w$ orientation with respect to a point r in the plane, if $\exists \alpha>0$ such that $\forall p$ on $e: \operatorname{cwarc}(r, p, \alpha) \cap$ $\operatorname{int}(R)=\emptyset$. The edge e is removable in ccw orientation with respect r, if $\exists \alpha>0$ such that $\forall p$ on e : $\operatorname{ccwarc}(r, p, \alpha) \cap \operatorname{int}(R)=\emptyset$. Bose et al. [7] proved that the valid orientation for cast removal with respect to r changes at a point $p \in \partial R$ if and only if p either locally minimizes or maximizes the distance between ∂R and r. This result ensures that p can be rotated infinitesimally in arbitrary orientation with respect to $l^{\prime}(p)$ iff p either locally minimizes or maximizes the distance between $\partial P \cap \pi$ and $l^{\prime}(p)$ and p is not a reflex vertex in π. Hence, C can rotate infinitesimally in cw (respectively ccw) orientation with respect to l without penetrating P_{2} (respectively P_{1}), if every vertex p of C either locally minimizes or maximizes the distance between $\partial P \cap \pi$ and $l^{\prime}(p)$ and is not a reflex vertex in π.

The aim is to test for every point p of C whether it either locally minimizes or maximizes the distance between $\partial P \cap \pi$ and $l^{\prime}(p)$ and is not a reflex vertex in π. Note that p is incident to two edges in C, because C is a set of non-intersecting simply closed cycles on P. Hence, testing whether p is a local extremum requires intersecting π with the four faces adjacent to the two edges of C adjacent to p. We can test whether p minimizes or maximizes the distance to $l^{\prime}(p)$ by computing the distances from p and p^{\prime} s two neighboring vertices in π to $l^{\prime}(p)$. If p is closer to $l^{\prime}(p)$ than its two neighboring vertices, it locally minimizes the distance between $\partial P \cap \pi$ and $l^{\prime}(p)$. If p is further from $l^{\prime}(p)$ than its two neighboring vertices, it locally maximizes the distance between $\partial P \cap \pi$ and $l^{\prime}(p)$. Hence, testing whether one vertex p of C can rotate infinitesimally in cw (respectively ccw) orientation with respect to l without penetrating $\operatorname{int}\left(P_{2}\right)$ (respectively $\operatorname{int}\left(P_{1}\right)$) requires constant time. As C has $O(n)$ vertices, testing whether P_{1} and P_{2} collide requires $O(n)$ time.

This yields the following result:
Theorem 1. Given a polyhedron P with combinatorial complexity n and a line of rotation l in 3dimensional space, it is possible to determine whether P is robustly castable with respect to l in time $O(n)$.

3.2 General rotational casting

Now, we turn our attention to general rotational casting. Recall that the only difference between a polyhedron being robustly rotationally castable and rotationally castable is the degenerate situation where faces or reflex edges of P are perpendicular to l. We now outline how to handle this situation which turns out to impose an additional $\log n$ factor on the running time. Thus, determining whether a polyhedron P is castable with respect to a line l in space requires $O(n \log n)$ time.

Consider the notation of Lemma 1. In the case of general castability of P, it is possible that a face f of P with inner normal \vec{n} is perpendicular to the given line l.

Observation 1. Let f be a face of P with inner normal \vec{n} and let l be a line in direction \vec{l}. If $l \cap S(f)=\emptyset$ and $\vec{n} \times \vec{l}=\mathbf{0}, f$ is removable in either $c w$ or $c c w$ orientation with respect to l.

Proof. The idea of the proof is similar to the proof of Lemma 1. Consider the supporting plane π of f. Denote the intersection point of π and l by $l^{\prime}(p)$. Every point p of f moves on $\operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right)$ or $\operatorname{ccwarc}\left(l^{\prime}(p), p, \alpha\right)$ when rotated around an angle α around l. As in the proof of Lemma 1, denote the vector from p to $l^{\prime}(p)$ by $\overrightarrow{p l^{\prime}}(p)$ and the vector $\vec{l} \times \overrightarrow{p l^{\prime}}(p)$ by $\overrightarrow{p l^{\prime}}(p)^{\perp}$. For any p not incident to l^{\prime}, infinitesimal movements along $\operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right)$ or $\operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right)$ correspond to infinitesimal movements along the vector $\overrightarrow{l^{\prime}}(p)^{\perp}$ or $-\overrightarrow{p l^{\prime}}(p)^{\perp}$ respectively. Hence, only translations need to be considered.

Let p be an arbitrary point in the interior of f. There exists an open ball b with positive radius centered at p with the property that exactly half of b is contained in $\operatorname{int}(P)$ and exactly half of b is contained in the exterior of P. Denote the ray starting at p propagating in direction $\overrightarrow{p^{\prime}}(p)^{\perp}$ by q^{+} and denote the ray starting at p propagating in direction $-\overrightarrow{l^{\prime}}(p)^{\perp}$ by q^{-}.

Let $l \cap S(f)=\emptyset$, let \vec{l} be parallel to \vec{n}, and let p be an arbitrary point in the interior of f. Both the intersection $b \cap q^{+}$and the intersection $b \cap q^{-}$are a subset of ∂P and hence, completely outside of $\operatorname{int}(P)$. Hence, p can move infinitesimally along both $\overrightarrow{p l^{\prime}}(p)^{\perp}$ and $-\overrightarrow{p l^{\prime}}(p)^{\perp}$ without penetrating $\operatorname{int}(P)$. Therefore, $\exists \alpha>0$ such that $\forall p$ on $f: \operatorname{cwarc}\left(l^{\prime}(p), p, \alpha\right) \cap \operatorname{int}(P)=\emptyset$ and $\exists \alpha>0$ such that $\forall p$ on $f: \operatorname{ccwarc}\left(l^{\prime}(p), p, \alpha\right) \cap \operatorname{int}(P)=\emptyset$. Hence, f is removable using either a cw or a ccw rotation around l.

As in Section 3.1, it is possible to label all the faces of P that are not perpendicular to l as removable in cw, ccw, or no orientation in $O(n)$ time. It remains to split the faces with $l \cap S(f)=\emptyset$ and $\vec{n} \times \vec{l}=\mathbf{0}$ and assign unique valid orientations to the newly created faces if possible. The face f can be partitioned into two (possibly empty) sets of faces F_{1} and F_{2}, such that all the faces adjacent to f removable in cw orientation with respect to l are adjacent to faces in F_{1} and all the faces adjacent to f removable in ccw orientation with respect to l are adjacent to faces in F_{2}. The definition of castability of a polyhedron implies that f is only removable with respect to l if there exists a partitioning of f into F_{1} and F_{2} with the following two properties: F_{1} does not intersect F_{2} when rotated infinitesimally in cw orientation with respect to l and F_{2} does not intersect F_{1} when rotated infinitesimally in ccw orientation with respect to l. Such a partitioning is called a valid partitioning of f. The definition of castability implies that P is not castable with respect to l if no valid partitioning of f exists. Then, we say that f is not removable with respect to l.

If l passes through a hole of a face f perpendicular to l, there are two possible cases: $l \cap \partial P \neq \emptyset$ and $l \cap \partial P=\emptyset$. If $l \cap \partial P \neq \emptyset$, at least one of the faces of P intersects l and is therefore not removable with respect to l. If $l \cap \partial P=\emptyset$, the boundary of the hole of P that contains l can not be removed without penetrating $\operatorname{int}(P)$. This yields the following observation:

Observation 2. If l passes through a hole of f, P is not castable with respect to l.
Lemma 5. Let P be a polyhedron with combinatorial complexity n and let l be a line in direction \vec{l}. For all faces f of P with inner normal $\vec{n}, l \cap S(f)=\emptyset$, and \vec{l} is parallel to \vec{n}, we can find a valid partitioning or report that f is not removable with respect to l in total time $O(n \log n)$.

Proof. Consider a single face f with inner normal $\vec{n}, l \cap S(f)=\emptyset$, and \vec{l} is parallel to \vec{n}. As f is located in a plane orthogonal to l and as no two adjacent faces of P are parallel, we know the valid orientation for cast removal with respect to l for every face adjacent to f. An edge of f is considered removable in cw (respectively ccw) orientation with respect to l if it is incident to a face adjacent to f removable in cw (respectively ccw) orientation with respect to l. Since the valid orientations with respect to l of all the faces adjacent to f are known, every edge of f can be labeled as removable
in cw or ccw orientation with respect to l, respectively, in constant time a piece. The aim is to partition f into two or more components F_{1} and F_{2}, such that all the edges of f removable in cw orientation with respect to l are only incident to F_{1} and all the edges removable in ccw orientation with respect to l are only incident to F_{2}.

Denote the set of edges of f removable in cw orientation with respect to l by $C W(f)$ and the set of edges of f removable in ccw orientation with respect to l by $C C W(f)$. Define $c w \alpha_{1}(p) \geq$ 0 as the maximal angle by which p can be rotated in cw orientation with respect to l without penetrating the exterior of f. Let $c w \alpha_{2}>0$ be an arbitrarily small positive angle. Define $c w \alpha(p)=$ $\max \left(c w \alpha_{1}(p), c w \alpha_{2}\right)$ and note that $c w \alpha(p)>0$. Let l^{\prime} denote the point $l \cap \pi$, where π is the supporting plane of f. There exists a valid partitioning of f if and only if $\left(\operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \backslash p\right) \cap$ $C C W(f)=\emptyset \forall p \in C W(f)$. The proof of this statement consists of two parts. First, we prove that f is not removable with respect to l if $\exists p \in C W(f)$, such that $\left(\operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \backslash p\right) \cap C C W(f) \neq$ \emptyset. From the definition of $c w \alpha(p)$, we know that $\left(\operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \backslash p\right) \cap \partial f$ is a single point q. The assumption ensures that $q \in C C W(f)$. If ($\operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \backslash(p \cup q)$ is completely contained in the exterior of $P, c w \alpha(p)$ is an infinitesimally small angle. But this implies that p can not be rotated by an arbitrarily small angle in cw orientation with respect to l without hitting a point of $C C W(f)$. The definition of castability implies that f is not removable. Otherwise, $\left(\operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \backslash(p \cup q) \in \operatorname{int}(f)\right.$. Since p and q need to be removed in opposite orientations with respect to l, we find at least one point $p^{*} \in \operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right)$, where the valid orientation with respect to l changes from cw to ccw when traversing $\operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right)$ starting at p. As the traversal from p to q is a rotation in cw orientation around l^{\prime}, p^{*} penetrates F_{2} (respectively F_{1}) when rotated infinitesimally in cw (respectively ccw) orientation with respect to l. Therefore, f is not removable with respect to l.

The second part we prove is that there exists a valid partitioning of f if $\left(\operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \backslash\right.$ $p) \cap C C W(f)=\emptyset \forall p \in C W(f)$. We prove this explicitly by assigning a unique valid orientation with respect to l to every point $q \in f$, such that no cw point of f penetrates F_{2} when rotated infinitesimally in cw orientation with respect to l and no ccw point of f penetrates F_{1} when rotated infinitesimally in ccw orientation with respect to l. Consider an arbitrary point $p \in C W(f)$. Since $\left(\operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \backslash p\right) \cap C C W(f)=\emptyset \forall p \in C W(f)$, every point q on $\left(c w a r c\left(l^{\prime}, p, c w \alpha(p)\right)\right)$ can rotate infinitesimally in cw orientation with respect to l without hitting a point of $C C W(f)$. Hence, we label every point $q \in \operatorname{int}(f)$ with $\exists p \in C W(f)$, such that $q \in \operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right)$ as removable in cw orientation with respect to l. Every point $q \in \operatorname{int}(P)$ with $q \notin \operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \forall p \in$ $C W(f)$ can leave $\operatorname{int}(f)$ by a ccw rotation with respect to l without intersecting $C W(f)$. Every point $q \in \partial P$ with $q \notin \operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \forall p \in C W(f)$ can rotate by an infinitesimally small angle in ccw rotation with respect to l without intersecting $C W(f)$. Hence, we label every point $q \in f$ with $q \notin \operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \forall p \in C W(f)$ as removable in ccw orientation with respect to l. Since the two sets $F_{1}=\left\{q \mid \exists p \in C W(f)\right.$, such that $\left.q \in \operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right)\right\}$ and $F_{2}=\{q \mid q \notin$ $\left.\operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \forall p \in C W(f)\right\}$ have the properties that $F_{1} \cap F_{2}=\emptyset$ and $f=F_{1} \cup F_{2}$, a valid partitioning of f was found. Note that the set of faces forming F_{1} and F_{2}, respectively, consists of faces bounded by edges of f and circular arcs with center point l^{\prime}.

Next, we present an algorithm to decide whether $\left(c w a r c\left(l^{\prime}, p, c w \alpha(p)\right) \backslash p\right) \cap C C W(f)=\emptyset \forall p \in$ $C W(f)$ for a given face f and analyze its running time. Each edge of f is labeled as removable in cw or ccw orientation with respect to l respectively. The aim is to test whether any point p on an edge removable in cw orientation with respect to l intersects an edge removable in ccw orientation with respect to l when rotated by $c w \alpha(p)$ in cw orientation with respect to l. To conduct this test, f
is represented in a fixed polar coordinate system, where l^{\prime} is the origin and where the polar axis is not perpendicular to any edge of f and does not intersect f. If it is impossible to represent f that way, then P is not castable with respect to l, because the initial assumption ensures that $l^{\prime} \notin \operatorname{int}(f)$ and Observation 2 shows that P is not castable with respect to l if l passes through a hole of f. In polar coordinates, every point is described by an angle ϕ and the distance d from the origin. Transform the coordinate system into a cartesian coordinate system, such that the x-axis describes the angle ϕ and the y-axis describes the distance d. Considering this transformed system between $x=0$ and $x=2 \pi$ shows the transformed polar coordinate system. The polygon f is transformed into \tilde{f}. Since the positive polar axis does not intersect f, f and \tilde{f} are topologically equivalent. The vertices of \tilde{f} are points and the edges of \tilde{f} are transformed line segments. The transformation of a line l is in essence a curve describing the distance of points on the line to the origin. The distance of points on l to the origin has exactly one minimum and consists of two strictly monotone pieces with monotone derivatives. Hence, there exists a pair $\left(d_{0}, \phi_{0}\right)$ that denotes the minimal distance from the line to the origin and the distance increases symmetrically as ϕ increases or decreases, respectively. This yields that edges of \tilde{f} have one global minimum and consist of at most two strictly monotone pieces. Furthermore, each edge e of f was split before (while splitting faces of type 4) at the perpendicular projection of l^{\prime} on e. This corresponds to splitting each edge \tilde{e} of \tilde{f} at the global minimum. Hence, every edge of \tilde{f} is a strictly monotone curve with monotone derivative. Two edges of \tilde{f} only intersect in vertices of \tilde{f}. Each edge \tilde{e} has constant description size.

In the cartesian coordinate system, rotations in cw (respectively ccw) orientation with respect to l^{\prime} correspond to translations in direction of the negative (respectively positive) x-axis. It is possible to determine whether f is removable with respect to l by enlarging a circle in the polar coordinate system. This corresponds to sweeping a line in y-direction in the cartesian plane. Let each edge \tilde{e} of \tilde{f} be labeled as removable in cw or ccw orientation with respect to l respectively and let \tilde{e} have a label indicating whether $\operatorname{int}(\tilde{f})$ is located to the left or to the right side of \tilde{e}. Let the sweep line status of the plane sweep algorithm contain the edges of \tilde{f} that are currently intersected by the sweep line and let the event queue contain all the vertices of \tilde{f}. At every event point of the plane sweep algorithm, an edge of \tilde{f} is either inserted to or removed from the sweep line status. If this insertion or removal, respectively, yields one of the following two situations, the algorithm reports that f is not removable with respect to l.

1. An edge $\tilde{e_{1}}$ removable in cw orientation with respect to l is located immediately to the right of an edge $\tilde{e_{2}}$ removable in ccw orientation with respect to l and $\operatorname{int}(\tilde{f})$ is located to the left of $\tilde{e_{1}}$.
2. An edge $\tilde{e_{1}}$ removable in cw orientation with respect to l is located immediately to the right of an edge $\tilde{e_{2}}$ removable in ccw orientation with respect to $l, \operatorname{int}(\tilde{f})$ is located to the right of $\tilde{e_{1}}$, and $\tilde{e_{1}}$ and $\tilde{e_{2}}$ share a vertex.

If none of the above two situations occurs during the plane sweep, the algorithm reports that f is removable with respect to l.

The proof of correctness of this algorithm consists of two parts. The first part, f is not removable with respect to l if the algorithm finds one of the two above mentioned situations is easy to see. It remains to prove that f is removable with respect to l if none of the above mentioned situations occur. We prove this by contradiction and assume that f is not removable with respect to l although the two situations did not occur. Hence, $\exists p \in C W(f)$, such that ($\operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \backslash$
$p) \cap C C W(f) \neq \emptyset$. Since the transformation from f to \tilde{f} maintains the distance from $l^{\prime}, \exists p \in$ $C W(\tilde{f})$, such that $\left(\operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \backslash p\right) \cap C C W(\tilde{f}) \neq \emptyset$. Let the point $q=\left(\operatorname{cwarc}\left(l^{\prime}, p, c w \alpha(p)\right) \backslash\right.$ $p) \cap C C W(\tilde{f})$. Since every edge of \tilde{f} is strictly monotone and has a monotone derivative, p and q are located on distinct edges $\tilde{e_{1}}$ and $\tilde{e_{2}}$ of \tilde{f} respectively. Two situations are possible. First, $c w \alpha(p)$ is the cw angle that p is rotated by prior to leaving the interior of \tilde{f}. Assume without loss of generality that there is no edge between $\tilde{e_{1}}$ and $\tilde{e_{2}}$. This assumption is valid, because if there is an edge between $\tilde{e_{1}}$ and $\tilde{e_{2}}$, we can find an edge ${\tilde{e_{2}}}^{\prime}$ with the desired property. Hence, $\tilde{e_{1}}$ is located immediately to the right of $\tilde{e_{2}}$ and $\operatorname{int}(\tilde{f})$ is located to the left of $\tilde{e_{1}}$. This corresponds to the first situation mentioned above and therefore contradicts the assumption. Second, $c w \alpha(p)$ is an infinitesimally small angle, i.e. $\operatorname{int}(\tilde{f})$ is located to the right of the edge $\tilde{e_{1}}$ and the distance between $\tilde{e_{1}}$ and $\tilde{e_{2}}$ is arbitrarily small. Hence, $\tilde{e_{1}}$ and $\tilde{e_{2}}$ share a vertex. This corresponds to the second situation mentioned above and therefore contradicts the assumption and proves the correctness of the algorithm.

For a face with s vertices, labeling all of the edges as removable in cw or ccw orientation with respect to l and transforming f to \tilde{f} takes time $O(s)$. The plane sweep algorithm takes time $O(s \log s)$ [12]. Since no two adjacent faces of P are parallel, every vertex of P is part of at most one face perpendicular to l. Hence, it takes $O(n \log n)$ total time to test all of P 's faces with inner normal $\vec{n}, l \cap S(f)=\emptyset$, and \vec{l} is parallel to \vec{n}.

This yields the conclusion that all the faces of a polyhedron P with combinatorial complexity n can be labeled as removable in cw, ccw, or no orientation with respect to a line of rotation l in space in $O(n \log n)$ total time.

Since Lemmata 3 and 4 still hold in the general setting, we conclude with the following theorem:
Theorem 2. Given a polyhedron P with combinatorial complexity n and a line of rotation l in 3dimensional space, it is possible to determine whether P is castable with respect to l in time $O(n \log n)$.

4 Determining all valid casting lines

In this section, we solve the problem of finding all lines l in 3-dimensional space, such that a given polyhedron is (robustly) castable with respect to l. Two aspects of the same problem are considered: reporting a representative for each class of combinatorially distinct (robust) valid casting lines for a given polyhedron and preprocessing P such that, for any given query line l, we can efficiently determine if P is (robustly) castable with respect to l. Two lines l_{1} and l_{2} are combinatorially distinct if the valid casting line l_{1} with respect to P can not continuously be moved to l_{2} without becoming an invalid casting line with respect to P.

4.1 Robust rotational casting

Recall that a polyhedron P is not robustly castable with respect to a line l with the property that any face or reflex edge of P is contained in a plane perpendicular to l. Hence, this section only considers lines l, such that no face or reflex edge of P is perpendicular to l.

As mentioned before, Bose et al. [7] consider rotational castability of polygons in two dimensions. They define a polygon to be rotationally castable with respect to a point r in the plane if the boundary of the polygon can be partitioned into exactly two connected chains, such that all the
edges of one chain are removable in cw orientation with respect to r and all edges of the other chain are removable in ccw orientation with respect to r.

The 3 -dimensional casting problem can be reduced to the 2 -dimensional version considered by Bose et al. [7]. Consider an arbitrary plane π orthogonal to l and compute the set $P^{\prime}=\pi \cap P$. The intersection consists of sets of polygons, since P is a polyhedron. Hence, the castability of P^{\prime} with respect to the point $l^{\prime}=\pi \cap l \in \mathbb{R}^{2}$ can be analyzed using the methods proven by Bose et al. [7]. Since P^{\prime} consists of a set of polygons, P^{\prime} is castable with respect to l^{\prime} if and only if all of the polygons in P^{\prime} are castable with respect to l^{\prime}. If a set of polygons forms a polygon with holes, P is not robustly castable with respect to l, because the polygon forming the hole can not be removed without penetrating $\operatorname{int}(P)$.

Since P is a polyhedron, the boundary ∂P is an orientable surface. The proof of Lemma 3 states that P is not castable if ∂P is not connected. Hence, we assume in the following that ∂P is a connected orientable surface in \mathbb{R}^{3}.

Definition 5. The genus g of a connected orientable surface $S \in \mathbb{R}^{3}$ is the maximum number of cuttings along closed simple curves without disconnecting S.

The genus of a connected orientable surface S equals the number of tunnels in S.
Lemma 6. A polyhedron P in \mathbb{R}^{3} is robustly castable with respect to a line of rotation l if and only if every cross section P^{\prime} of P with a plane π perpendicular to l is castable with respect to the point $l^{\prime}=\pi \cap l$.

Proof. The proof consists of two parts. First, P is not robustly castable with respect to l if any cross section P^{\prime} is not castable with respect to l^{\prime} because the rotation of ∂P around l includes the rotation of every possible ∂P^{\prime} around l^{\prime}.

Proving that P is robustly castable with respect to l if every cross section P^{\prime} is castable with respect to l^{\prime} requires showing that all the points on ∂P^{\prime} that locally minimize or maximize the distance from ∂P^{\prime} to l^{\prime}, respectively, form connected chains that partition ∂P into exactly two connected components. It follows then that all the faces of one component are removable in cw orientation with respect to l and all the faces of the other component are removable in ccw orientation with respect to l. Since the partitioning of ∂P is at points that locally minimize or maximize the distance from ∂P^{\prime} to l^{\prime}, respectively, that are not reflex vertices, Lemma 4 ensures that no collisions occur.

To examine the location of points on ∂P^{\prime} that locally minimize or maximize the distance from ∂P^{\prime} to l^{\prime}, respectively, the plane π perpendicular to l is swept over P in direction \vec{l}. When π is swept over P, l^{\prime} does not move and P^{\prime} changes continuously. Hence, the points on ∂P^{\prime} that locally minimize or maximize the distance from ∂P^{\prime} to l^{\prime}, respectively, move continuously along edges of ∂P and orthogonal projections of l on faces of ∂P. This implies that vertices of ∂P and the start and end points of the orthogonal projections of l on faces of ∂P are the only event points of the sweep algorithm. The output of the plane sweep is a set of circular lists representing cycles on ∂P formed by points on ∂P^{\prime} that locally minimize or maximize the distance from ∂P^{\prime} to l^{\prime}, respectively. The circular lists contain event points of the sweep algorithm ordered by their appearance on the cycle. During the plane sweep, a set of lists L that represent parts of circular lists is updated. When referring to event points of the plane sweep, only event points that were not swept yet are considered.

First, assume that only one event point occurs per cross section. The following events can occur at an event point v of the plane sweep:

1. In P^{\prime}, a new polygon occurs as isolated vertex v. Hence, v is both a point that locally minimizes and maximizes the distance from ∂P^{\prime} to l^{\prime}. A new list that represents part of a circular list is created and added to the set L. It contains the event point adjacent to v with minimal distance from l (a point that locally minimizes the distance from ∂P^{\prime} to l^{\prime}), v, and the event point adjacent to v with maximal distance from l (a point that locally maximizes the distance from ∂P^{\prime} to l^{\prime}) in that order.
2. In P^{\prime}, an existing polygon disappears as isolated vertex v. Hence, v is both a point that locally minimizes and maximizes the distance from ∂P^{\prime} to l^{\prime}. The event point v is already contained in one list of L as first point and in one (possibly the same) list of L as last point. If v is contained in two different lists, the lists are joined. Otherwise, the list of L containing v as both first and last point is stored as circular list.
3. In P^{\prime}, an existing polygon splits into two polygons. The two polygons have the common vertex v, and therefore, v is both a point that locally minimizes and maximizes the distance from ∂P^{\prime} to l^{\prime}. A new list that represents part of a circular list is created and added to the set L. It contains the event point adjacent to v with minimal distance from l, v, and the event point adjacent to v with maximal distance from l in that order.
4. In P^{\prime}, two polygons merge into one. The two polygons have the common vertex v, and therefore, v is both a point that locally minimizes and maximizes the distance from ∂P^{\prime} to l^{\prime}. The event point v is already contained in one list of L as first point and in one (possibly the same) list of L as last point. If v is contained in two different lists, the lists are joined. Otherwise, the list of L containing v as both first and last point is stored as circular list.
5. No topological changes occur in the cross section and the event point v is not contained in any list of L. Hence, v is neither a point that locally minimizes nor a point that locally maximizes the distance from ∂P^{\prime} to l^{\prime} and no updates are required.
6. No topological changes occur in the cross section and the event point v is contained in a list of L as first or last point respectively. If v is the first point, v is a point that locally minimizes the distance from ∂P^{\prime} to l^{\prime}. The event point adjacent to v with minimal distance from l is added to the list of L containing v at the front. If v is the last point, v is is a point that locally maximizes the distance from ∂P^{\prime} to l^{\prime}. The event point adjacent to v with maximal distance from l is added to the list of L containing v at the tail.

Note that although twelve topological changes can occur when a plane is swept over a polyhedron (see [6]), only the first four above are relevant as polygons with holes are not castable.

If a cross section contains more than one event point, the event points can simply be treated in sequential order, because no two event points are on one face or edge of P. As the set of circular lists L returned by the plane sweep represents chains of points on ∂P^{\prime} that locally minimize or maximize the distance from ∂P^{\prime} to $l^{\prime}, \partial P$ is partitioned along L. Hence, it remains to show that L partitions ∂P into exactly two connected components. We prove this by induction on the genus g of ∂P.

Base case: A simple polyhedron P (i.e. $g=0$) is robustly castable with respect to l if every cross section P^{\prime} is castable with respect to l^{\prime}. The plane sweep returns one simply connected cycle. We prove this by induction on the number of split and merge event points (event points of type 3 and 4).

- Base case: There are no split or merge vertices. The first event point is of type 1 and creates one list that represents part of a circular list. As long as only event points of type 5 and 6 occur, no new lists are created. As there are no merge event points, it is impossible that further event points of type 1 occur. Hence, the only topological change that will occur when the last event point is swept is of type 2 . This results in one circular list representing a simply connected cycle on ∂P. As ∂P has genus 0 , any simply connected cycle partitions ∂P into exactly two connected components.
- Induction step: Given that the plane sweep algorithm returns one circular list if k topological changes of type 3 or 4 occur during the plane sweep, we show that the plane sweep algorithm returns one circular list if $k+1$ topological changes of type 3 or 4 occur during the plane sweep. If the $k+1^{\text {st }}$ topological change is a split, a new list L_{k} is created. After the split, the two new polygons in P^{\prime} disappear in event points of type 2. Note that they can not merge again as P is simply connected. When the first of the two new polygons in P^{\prime} disappears in an event point of type $2, L_{k}$ joins another list of L. The initial assumption implies that this list is eventually the only remaining list that will be returned as circular list. If the $k+1^{\text {st }}$ topological change is a merge, a new polygon occurs as an isolated vertex at an event point of type 1 creating a new list L_{k}. When this new polygon merges with another polygon, L_{k} joins another list of L. The initial assumption implies that this list is eventually the only remaining list that will be returned as circular list. Hence, the sweep algorithm always returns one simply connected circular list for a polyhedron of genus 0 .

Induction step: Given that a polyhedron P_{g} with genus g is robustly castable with respect to l if every cross section P_{g}^{\prime} is castable with respect to l^{\prime}, we show that a polyhedron P_{g+1} with genus $g+1$ is robustly castable with respect to l if every cross section P_{g+1}^{\prime} is castable with respect to l^{\prime}. Adding a tunnel to the castable polyhedron P_{g} yields P_{g+1}. Hence, only event points incident to the newly created tunnel are relevant. The first event point that occurs is of type 3, i.e. a new list L_{g} is created. As long as only event points of type 5 and 6 occur, no new lists are created. It is impossible that an event point of type 1 or 2 occurs incident to a tunnel. If multiple event points of type 3 occur, the polygons in P_{g+1}^{\prime} can therefore only merge again. Hence, one simply connected circular list representing a cycle on ∂P_{g+1} is returned when the sweep plane passed the tunnel. As all of the event points are incident to the newly created tunnel, the cycle does not intersect any of the existing cycles. Hence, P_{g+1} is partitioned into exactly two connected components by the points in L, and is therefore robustly castable with respect to l. It remains to prove that by adding a tunnel to P_{g}, every possible polyhedron of genus P_{g+1} can be created. The Principal Theorem of surface topology [22] states that two closed orientable surfaces are topologically equivalent if and only if they have the same genus. Hence, any polyhedron of genus $g+1$ is topologically equivalent to P_{g+1} and can therefore be created by adding a tunnel to P_{g}.

For the two dimensional casting problem, Bose et al. [7] define black regions for edges and reflex vertices of a simple polygon as follows.

Definition 6. Let e be an edge of a simple polygon with vertices a and b and denote the inner normal of e by $\vec{n}(e)$. The open strip

$$
\{\vec{p}+t \vec{n}(e) \mid p \in e \backslash\{a, b\}, t \geq 0\}
$$

is called the black region of e.

Let v be a reflex vertex of a simple polygon. Denote the two edges adjacent to v by e_{1} and e_{2} and denote their inner normals by $\vec{n}\left(e_{1}\right)$ and $\vec{n}\left(e_{2}\right)$ respectively. The near cone of v is defined as

$$
\left\{\vec{v}+t_{1} \vec{n}\left(e_{1}\right)+t_{2} \vec{n}\left(e_{2}\right) \mid t_{1}, t_{2} \geq 0, t_{1} t_{2} \neq 0\right\}
$$

and the far cone of v is defined as

$$
\left\{\vec{v}+t_{1} \vec{n}\left(e_{1}\right)+t_{2} \vec{n}\left(e_{2}\right) \mid t_{1}, t_{2}<0\right\} .
$$

The black region of v is the union of the near cone and the far cone of v.
If the center of rotation r is located in the black region of an edge e, e is not removable with respect to r. Similarly, if r is located in the black region of a reflex vertex v, v can not be rotated by an infinitesimal angle around r without penetrating the interior of the polygon. Bose et al. [7] prove that a polygon is castable with respect to a point r in the plane if and only if r is not contained in the black region induced by edges and reflex vertices of the polygon.

In analogy to the 2-dimensional casting problem discussed by Bose et al. [7], it is possible to define black regions. For a polyhedron, black regions exist for faces, reflex edges, and reflex vertices.

Definition 7. For a face f of P, the black region of f is defined as $S^{+}(f)$.
Note that there is no valid casting line for f that properly intersects the black region of f (see Lemma 1). Figure 2 shows the black region of f, which is the prism that is swept when translating f along its inner normal vector.

Definition 8. Let e be a reflex edge of P and denote the inner normals of its two adjacent faces by $\overrightarrow{n_{1}}$ and $\overrightarrow{n_{2}}$. Define the near wedge of e as

$$
S^{+}(e)=\left\{\vec{p}+t_{1} \overrightarrow{n_{1}}+t_{2} \overrightarrow{n_{2}}: p \in \operatorname{cl}(e) \text { and } t_{1}, t_{2} \geq 0\right\}
$$

and the far wedge of e as

$$
S^{-}(e)=\left\{\vec{p}+t_{1} \overrightarrow{n_{1}}+t_{2} \overrightarrow{n_{2}}: p \in \operatorname{cl}(e) \text { and } t_{1}, t_{2}<0\right\} .
$$

The black region of a reflex edge e is defined as $\left(S^{+}(e) \cup S^{-}(e)\right) \backslash e$.
For every point r contained in the black region of a reflex edge e, there exists a point $q \in e$ that locally minimizes or maximizes the distance from r to ∂P, respectively.

Definition 9. A vertex v of P is a reflex vertex of P iff all of v 's adjacent edges are reflex edges of P. Let v be a reflex vertex of P and denote the inner normals of its r adjacent faces by $\overrightarrow{n_{1}}, \ldots, \overrightarrow{n_{r}}$. Define the near cone of v as

$$
S^{+}(v)=\left\{\vec{v}+\sum_{i=1}^{r} t_{i} \vec{n}_{i}: t_{i}>0 \forall i=1, \ldots, r\right\}
$$

and the far cone of v as

$$
S^{-}(v)=\left\{\vec{v}+\sum_{i=1}^{r} t_{i} \overrightarrow{n_{i}}: t_{i}<0 \forall i=1, \ldots, r\right\} .
$$

The black region of a reflex vertex v is defined as $S^{+}(v) \cup S^{-}(v)$.

Figure 3: Left: The near and far wedge of e. Right: The near and far cone of v.

For every point r contained in the black region of a reflex vertex v, v locally minimizes or maximizes the distance from r to ∂P, respectively. Figure 3 illustrates the black region of a reflex edge and of a reflex vertex.

The black regions of faces, reflex edges, and reflex vertices of P are the black regions induced by P.

Lemma 7. A polyhedron P is robustly castable with respect to a line of rotation l, if and only if l does not intersect any of the black regions induced by P.

Proof. The proof consists of two parts. First, we prove that P is not robustly castable with respect to l if l intersects any of the black regions induced by P. If l intersects the black region induced by a face f of $P, l \cap S^{+}(f) \neq \emptyset$ and Lemma 1 states that P is not castable with respect to l. If l intersects the black region of a reflex edge e of P, there exists a point q on e that locally minimizes or maximizes the Euclidean distance from ∂P to l. If l is parallel to e, this is true for every point on e. Consider the intersection of P with the plane π perpendicular to l passing through q. In the cross-section, q is a reflex vertex that has extremal distance to $\pi \cap l$. Hence, $\pi \cap l$ is contained in the two-dimensional black region of q. The results by Bose et al. [7] and Lemma 6 ensure that P is not robustly castable with respect to l. If l intersects the black region induced by a reflex vertex v of P, v locally minimizes or maximizes the Euclidean distance from ∂P to l. With an argument similar to the one we used for reflex edges, we can then show that P is not robustly castable with respect to l.

Second, we prove that P is robustly castable with respect to l if l does not intersect the union of black regions induced by P. We prove this by contradiction and assume that l does not intersect the union of black regions induced by P and that P is not robustly castable with respect to l. Since P is not robustly castable with respect to l, Lemma 6 ensures that there exists a cross section of P with a plane π perpendicular to l that is not castable with respect to $\pi \cap l$. Hence, there exists a cross section, such that $\pi \cap l$ is contained in the 2 -dimensional black region of the cross section. Three cases are possible:

1. The point $l^{\prime}=\pi \cap l$ is contained in the black region of an edge $f^{\prime}=\pi \cap f$, where f is a face
of P with normal \vec{n} not parallel to the direction \vec{l} of l. Denote the perpendicular projection of l^{\prime} on $\operatorname{int}\left(f^{\prime}\right)$ by q. Since the normal vector of f^{\prime} is the projection of \vec{n} onto the plane π, there exists a $t \geq 0$, such that

$$
\overrightarrow{l^{\prime}}=\vec{q}+\left(\vec{n}-\frac{\langle\vec{n}, \vec{l}\rangle}{\langle\vec{l}, \vec{l}\rangle} \vec{l}\right) t
$$

Consider the point l^{*} with

$$
\overrightarrow{l^{*}}=\overrightarrow{l^{\prime}}+t \frac{\langle\vec{n}, \vec{l}\rangle}{\langle\vec{l}, \vec{l}\rangle} \vec{l}=\vec{q}+t \vec{n} .
$$

Clearly, $l^{*} \in l$, as l^{\prime} reaches l^{*} by being moved in direction \vec{l} only. Since $q \in f, l^{*}$ is also contained in the black region of f. This contradicts the initial assumption.
2. The point $l^{\prime}=\pi \cap l$ is contained in the black region of a reflex vertex $e^{\prime}=\pi \cap e$, where e is a reflex edge of P. Since $\pi \cap e$ is a vertex, none of the two faces adjacent to e is perpendicular to l. Denote the normal vectors of e 's two adjacent faces by $\overrightarrow{n_{1}}$ and $\overrightarrow{n_{2}}$ respectively. There exist two constants t_{1}, t_{2} with $t_{1}, t_{2} \geq 0, t_{1} t_{2} \neq 0$ or $t_{1}, t_{2}<0$, such that

$$
\overrightarrow{l^{\prime}}=\overrightarrow{e^{\prime}}+\left(\overrightarrow{n_{1}}-\frac{\left\langle\overrightarrow{n_{1}}, \vec{l} \vec{l}\right.}{\langle\vec{l}, \vec{l}\rangle} \vec{l}\right) t_{1}+\left(\overrightarrow{n_{2}}-\frac{\left\langle\overrightarrow{n_{2}}, \vec{l}\right\rangle}{\langle\vec{l}, \vec{l}\rangle} \vec{l}\right) t_{2} .
$$

Consider the point l^{*} with

$$
\overrightarrow{l^{*}}=\overrightarrow{l^{\prime}}+t_{1} \frac{\left\langle\overrightarrow{n_{1}}, \vec{l}\right\rangle}{\langle\vec{l}, \vec{l}\rangle} \vec{l}+t_{2} \frac{\left\langle\overrightarrow{n_{2}}, \vec{l}\right\rangle}{\langle\vec{l}, \vec{l}\rangle} \vec{l}=\overrightarrow{e^{\prime}}+t_{1} \overrightarrow{n_{1}}+t_{2} \overrightarrow{n_{2}} .
$$

Clearly, $l^{*} \in l$, as l^{\prime} reaches l^{*} by being moved in direction \vec{l} only. Since $e^{\prime} \in e, l^{*}$ is also contained in the black region of e. This contradicts the initial assumption.
3. The point $l^{\prime}=\pi \cap l$ is contained in the black region of a reflex vertex $v^{\prime}=\pi \cap v$, where v is a reflex vertex of P. Since v^{\prime} is a reflex vertex, π intersects exactly two of v 's adjacent faces and neither of those faces is perpendicular to l. Hence, a proof similar to the previous proof shows that l intersects the black region of v. This contradicts the initial assumption.
Since every possible case yields a contradiction, the initial statement is proven to be true.
Consider all the planes bounding black regions of faces, reflex edges, and reflex vertices of P. The black region of a face f of P is bounded by $\operatorname{deg}(f)$ planes and can be expressed using $\operatorname{deg}(f)$ lines perpendicular to f passing through vertices of f. The black region of a reflex edge e of P can be expressed using five lines: four lines perpendicular to the adjacent faces of e passing through the vertices of e and the supporting line of e. Finally, the black region of a reflex vertex v of P can be expressed using $\operatorname{deg}(v)$ lines perpendicular to the faces adjacent to v passing through v. Hence, the arrangement A in \mathbb{R}^{3} containing for every face f of P the lines perpendicular to f passing through vertices of f and the supporting lines of the reflex edges of P describes all of P 's black regions. The arrangement A contains $O(n)$ lines, since $\sum_{f \in P} \operatorname{deg}(f)=2 E$, where E is the number of edges of P. Two distinct lines $g_{1}, g_{2} \in A$ are in the same equivalence class of A iff it is possible to move g_{1} to g_{2} without crossing any of the lines forming A. If g_{1} does not cross any of the lines forming A during the transformation, it can not enter or leave any of the black regions induced by P. Assume that g_{1} and g_{2} are in the same equivalence class of A. Lemma 7 ensures that g_{2} is a valid casting line for P iff g_{1} is a valid casting line for P.

4.1.1 Reporting all valid casting lines

In this section, we find and report a representative for each class of combinatorially distinct valid robust casting lines for a given polyhedron P with combinatorial complexity n in time $O\left(n^{4} \alpha(n)\right)$, where $\alpha(n)$ is the inverse Ackermann function. The main idea used in this section is the fact that a line l in space is a valid robust casting line for P iff l does not intersect any black region induced by P, see Lemma 7.

Theorem 3. Given a polyhedron P with combinatorial complexity n, it is possible to report all of the valid robust casting lines for P in \mathbb{R}^{3} in time $O\left(n^{4} \alpha(n)\right)$, where $\alpha(n)$ is the inverse Ackermann function.

Proof. To report all of the valid casting lines for P in \mathbb{R}^{3}, we construct the arrangement A of the lines defined as intersections of the planes bounding black regions induced by P. Every cell of A corresponds to exactly one equivalence class of A. Therefore, it is possible to label each cell c of A as an equivalence class of valid or invalid casting lines for P. Finally, a representing line for each equivalence class labeled as valid is reported.

The arrangement A of $O(n)$ lines is constructed using a method by McKenna and O'Rourke [18]. They represent k lines in \mathbb{R}^{3} using four parameters per line and construct $O\left(k^{2}\right)$ planar arrangements of hyperbolas in $O\left(k^{2} \alpha(k)\right)$ time each. They show that the arrangement has complexity $\Theta\left(k^{4}\right)$ and can be constructed in time $O\left(k^{4} \alpha(k)\right)$. The arrangement is represented as graph G, where every line touching four of the k given lines or parallel to one of the k given lines and touching two of the remaining $k-1$ given lines is represented as a node of G. Using this method, A has complexity $O\left(n^{4}\right)$ and can be constructed it in time $O\left(n^{4} \alpha(n)\right)$.

Once A and G are constructed, every face of G needs to be labeled as valid or invalid. For this purpose, a boolean value is associated with every face f, reflex edge e, and reflex vertex v of P that indicates whether the current equivalence class of lines intersects the black region of f, e, or v respectively. We start at an arbitrary face f_{G} of G and test for each face, reflex edge, and reflex vertex of P whether it causes the equivalence class of lines represented by f_{G} to be invalid. After testing, we set the boolean value of each face, reflex edge, and reflex vertex appropriately and compute the number b of faces, reflex edges, and reflex vertices that cause f_{G} to be invalid. Clearly, f_{G} is valid if and only if $b=0$. This computation takes $O(n)$ time as every face, reflex edge, and reflex vertex of P needs to be considered. Next, G is traversed in depth-first order. Each time, an edge e_{G} of G is crossed, we update the boolean values of the face, the reflex edge, and the reflex vertex of P that induce e_{G} and the counter b. This way, every face of G is labeled in constant time a piece. The edge e_{G} and its incident nodes represent valid casting lines of P if and only if one or more of e_{G} 's adjacent faces is labeled valid. Hence, all of the equivalence classes of A can be labeled in time $O\left(n^{4}\right)$ and it is possible to report a representative for each class of combinatorially distinct valid casting lines for P in time $O\left(n^{4} \alpha(n)\right)$.

After computing A and G in $O\left(n^{4} \alpha(n)\right)$ preprocessing time, it is possible to perform line location in A, i.e. answer the question whether a given line l is a valid robust casting line for P. However, this query takes $O(n)$ time [18]. Note that it is possible to report whether P is robustly castable with respect to a line l in time $O(n)$ without preprocessing using Theorem 1. Therefore, a query time of $O(\log n)$ is preferable. Hence, we use another approach to preprocess space for fast line location.

4.1.2 Preprocessing space for fast line location

In this section, we preprocess the polyhedron P in time $O\left(n^{7+\epsilon}\right)$, where ϵ is an arbitrarily small constant, in a way that allows to answer whether a query line is a valid casting line for P in time $O(\log n)$.

Using the same main idea as above, consider all the planes bounding black regions of faces, reflex edges, and reflex vertices of P and their $O(n)$ intersecting lines. The arrangement of the lines is now represented in a way that allows fast queries.

For this purpose, each line is represented using Plücker coordinates, proposed in 1868 by Julius Plücker [20]. In Plücker space, an oriented 3 -dimensional line is described as a point called Plücker point in oriented projective 5 -dimensional space using six coordinates. Dually, each line can also be represented as a hyperplane called Plücker hyperplane in oriented projective 5 -dimensional space. For two lines l and g, the Plücker point of l is located on the Plücker hyperplane of g if and only if l and g intersect and vice versa. That way, intersection tests of lines are linearized for the cost of operating in 6 -dimensional space.

Consider a line l passing through two points $p=\left(p_{x}, p_{y}, p_{z}, p_{w}\right)$ and $q=\left(q_{x}, q_{y}, q_{z}, q_{w}\right)$ given in homogeneous space. The Plücker coordinates of the Plücker point corresponding to l are [$\left.l_{0}, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right]$ and the Plücker coefficients of the Plücker hyperplane corresponding to l are $\left[l_{5},-l_{4}, l_{3}, l_{2},-l_{1}, l_{0}\right]$ with $l_{0}=p_{x} q_{y}-p_{y} q_{x}, l_{1}=p_{x} q_{z}-p_{z} q_{x}, l_{2}=p_{y} q_{z}-p_{z} q_{y}, l_{3}=p_{x} q_{w}-p_{w} q_{x}, l_{4}=$ $p_{y} q_{w}-p_{w} q_{y}$, and $l_{5}=p_{z} q_{w}-p_{w} q_{z}$.

Note that the vector $\overrightarrow{l_{n}}=\left[l_{0},-l_{1}, l_{2}\right]^{T}$ is the cross product $\vec{p} \times \vec{q}$, which is the normal vector of the plane passing through the line l and the origin. Furthermore, the vector $\overrightarrow{l_{d}}=\left[l_{3}, l_{4}, l_{5}\right]^{T}$ is the difference vector $\vec{p}-\vec{q}$, which is the direction of the oriented line l.

The coordinates $\left[l_{0}, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right]$ specify a line in Plücker space if and only if

$$
\begin{equation*}
l_{0} l_{5}-l_{1} l_{4}+l_{2} l_{3}=0 \tag{1}
\end{equation*}
$$

This implies that not every set of 6-dimensional coordinates corresponds to a line in 3-dimensional space. In fact, in Plücker space, the set of all the lines corresponds to a 4 -dimensional hyper surface.

Two lines l and g intersect if and only if

$$
\begin{equation*}
l_{0} g_{5}-l_{1} g_{4}+l_{2} g_{3}+l_{3} g_{2}-l_{4} g_{1}+l_{5} g_{0}=0 \tag{2}
\end{equation*}
$$

If the Plücker point of l is not located on the Plücker hyperplane of g, the sign of Equation (2) indicates the orientation of l in relation to g.

A survey on Plücker coordinates can be found in Stolfi's book [23]. Chazelle et al. [9, 10] applied Plücker coordinates in Computational Geometry to represent arrangements of lines in space. However, as they are only interested in small parts of the full arrangement, such as the envelope of the arrangement or single cells of the arrangement, they do not construct the full arrangement of lines in space.

Theorem 4. A polyhedron P with combinatorial complexity n can be preprocessed in $O\left(n^{7+\epsilon}\right)$ time into a data structure of size $O\left(n^{6+\epsilon}\right)$, where ϵ is an arbitrarily small constant, such that for any given line l, we can decide in $O(\log n)$ time if P is robustly castable with respect to l.

Proof. Given k lines in 3-dimensional space, it is possible to represent them as k hyperplanes in 6 -dimensional Plücker space. The arrangement induced by the hyperplanes in $6 D$ represents the arrangement induced by the k given lines in 3-dimensional space. Arrangements of k hyperplanes
in d-dimensional space have been studies thoroughly and can be constructed in time $O\left(k^{d}\right)$ [13]. Hence, the 6 -dimensional arrangement A of the $O(n)$ lines bounding black regions induced by P can be constructed in time $O\left(n^{6}\right)$.

Once A is constructed, every cell of A needs to be labeled as an equivalence class of valid or invalid casting lines for P. This can be done using the same technique as in the proof of Theorem 3 in time $O\left(n^{6}\right)$.

A given query line l can be represented as a 6 -dimensional Plücker point. Since the query line is given, we know that the coordinates of the corresponding Plücker point satisfy Equation (1). Using the method of Meiser, it is possible to determine the cell of A containing the Plücker point in time $O(\log n)$ after preprocessing the arrangement in time $O\left(n^{7+\epsilon}\right)$ into a data structure of size $O\left(n^{6+\epsilon}\right)$ [19]. Once the cell is known, the label of the cell can be retrieved in constant time. Hence, it requires $O(\log n)$ time to determine if l is a valid casting line for P.

4.2 General rotational casting

In this section, we solve the problem of finding all lines l in 3 -dimensional space, such that a given polyhedron P is castable with respect to l. Since the situation is identical to the situation in Section 4.1 if lines perpendicular to a face or an edge of P are neglected, this section focuses on lines perpendicular to a face or an edge of P.

As in Section 4.1, consider a plane π perpendicular to the line of rotation l and intersect π with P. The intersection $P^{\prime}=\pi \cap P$ consists of proper intersections, edges of P and faces of P. If a cross section P^{\prime} does not contain any faces perpendicular to P, P^{\prime} can still be examined as before. Recall that if P^{\prime} contains a face of P, we need to test whether that face is removable with respect to l^{\prime}. The test can be performed using Lemma 5 . Hence, Lemma 6 can be changed to the following:
Lemma 8. A polyhedron P in \mathbb{R}^{3} is castable with respect to a line of rotation lif and only if every cross section P^{\prime} of P with a plane π perpendicular to l consists of castable and removable polygons with respect to $l^{\prime}=\pi \cap l$.

Proof. The main part of this Lemma was proven in the proof of Lemma 6. Hence, only faces perpendicular to l are discussed here. The proof of Lemma 5 shows that P is not castable if any face perpendicular to P is not removable with respect to l. Hence, P is not castable with respect to l if any of the cross sections P^{\prime} contains a polygon that is not castable or not removable with respect to l^{\prime}.

Next, we show that P is castable with respect to l if every cross section P^{\prime} consists of castable and removable polygons with respect to l^{\prime}. The same approach as in the proof of Lemma 6 is used and only faces perpendicular to l are discussed. If a cross section contains a face f perpendicular to l, we know that there exists a valid partitioning of f. If a new polygon occurs in P^{\prime} as face f, treat the face like a vertex of type 1. If an existing polygon disappears in P^{\prime} as face f, treat the face like a vertex of type 2. If an existing polygon splits into two or more polygons in P^{\prime}, f contains holes. Every arc contributing to a valid partitioning of f (see Lemma 5) that connects two holes of f is treated as a vertex of type 3. Arcs connecting to the outer face of f are treated as vertices of type 6. If two or more polygons merge into one in P^{\prime}, f contains holes. Every arc contributing to a valid partitioning of f that connects two holes of f is treated as a vertex of type 4. Arcs connecting to the outer face of f are treated as vertices of type 6 . In each of the cases, the set of edges and arcs yielding a valid partitioning of f can be treated in sequential order. Hence, every case can be
represented as a vertex of type 1 to 6 . Therefore, the proof of Lemma 6 holds even when the line of rotation is perpendicular to a face or reflex edge of P.

After introducing lines perpendicular to a face or edge of P, Lemma 7 does not hold any more. There are two reasons for this. First, there exist situations where P is castable with respect to l although l intersects black regions induced by P. As this cannot happen when faces and edges orthogonal to l are neglected (see Lemma 7), only those two situations need to be considered. If l intersects the black region of a face f perpendicular to l, f is not removable with respect to l (see Lemma 1). Hence, P is not castable with respect to l. If l intersects the near wedge of a reflex edge e perpendicular to l, consider the cross-section of P with the plane π perpendicular to l containing e. The point $l^{\prime}=l \cap \pi$ is contained in the 2D black region of e. Hence, Lemma 6 implies that P is not castable with respect to l. However, if l only intersects the far wedge of a reflex edge e of P perpendicular to l, P is castable with respect to l, because e can be split on the perpendicular projection of l on e and one part of e is removable in cw orientation with respect to l and the other part of e is removable in ccw orientation with respect to l. Second, there exist lines of rotation l, such that l does not intersect any of the black regions induced by P and P is not castable with respect to l. This can only occur, if P contains a face perpendicular to l that is not removable with respect to l (see Lemma 7). An example where a face perpendicular to l prevents P from being castable although l does not intersect any of the black regions induced by P is shown in Figure 4.

Figure 4: Example of polyhedron P that is not castable with respect to l although l does not intersect the black regions induced by P. Figure shows perspective view and front view.

Hence, Lemma 7 can be restated the following way:
Lemma 9. Let P be a polyhedron and let l be a line in space. The polyhedron P is castable with respect to l if l does not intersect any of the black regions induced by P and if every face of P perpendicular to l is removable with respect to l. If l intersects the black region induced by any face of P, the black region induced by any reflex vertex of P, or the near wedge of any reflex edge of P, P is not castable with respect to l.

In analogy to Section 4.1, the aim is now to construct an arrangement A with the property that every equivalence class of A represents exactly one class of combinatorially distinct lines. To achieve
this, the arrangement A used in Section 4.1 needs to be augmented to handle lines perpendicular to reflex edges and faces of P.

4.2.1 Reporting all valid casting lines

In this section, we modify the results of Section 4.1 to find and report a representative for each class of combinatorially distinct valid casting lines for a given polyhedron P in time $O\left(n^{4} \log n\right)$.

Theorem 5. Given a polyhedron P with combinatorial complexity n, it is possible to report all of the valid casting lines for P in \mathbb{R}^{3} in time $O\left(n^{4} \log n\right)$.

Proof. In Section 4.1, the arrangement A represented by the graph G introduced by McKenna and O'Rourke [18] is constructed to represent all the classes of combinatorially distinct lines in space. The lines that are not perpendicular to a reflex edge or face of P can still be categorized and labeled using this technique. However, the arrangement needs to be extended to handle lines perpendicular to reflex edges and faces of P.

We will first discuss how to augment the arrangement to represent lines perpendicular to reflex edges of P. Recall that for any line perpendicular to a reflex edge of P, the far wedge of the reflex edge does not induce a black region. Hence, we need to insert all of the lines in space that are perpendicular to an edge of P into the arrangement A. The aim is to insert nodes into G, such that any time a line g that is not perpendicular to an edge e of P is moved continuously until g is perpendicular to e, a node of G is passed. McKenna and O'Rourke [18] prove that a line restricted to intersect three skew lines has one degree of freedom. This degree of freedom can be used to move the line until it is perpendicular to e, unless every line touching the three skew lines is perpendicular to e. Consider a line touching three of the lines in the arrangement A. If every line touching the three skew lines is perpendicular to e, no node is inserted to G. The reason is that G already contains nodes that ensure that any time a line g that is not perpendicular to e is moved continuously until g is perpendicular to e, a node of G is passed. If there exists a line touching the three skew lines that is not perpendicular to e, the line touching the three skew lines perpendicular to e is inserted as node in G. For three given skew lines and an edge e, this line can be found in constant time, since every line touching three skew lines has one degree of freedom. To insert all of these nodes in G, the edges of G are traversed in depth-first order. An edge of G describes lines that are touching three skew lines. For each edge of G, find the $O(n)$ nodes describing a line touching three skew lines and perpendicular to an edge e of P. This requires $O(n)$ time. Then, sort the nodes according to their appearance on the edge in $O(n \log n)$ time and insert them in order. It takes $O(n \log n)$ time to insert the new nodes for one edge of G. Since G has $O\left(n^{3}\right)$ edges, the total time to construct this arrangement is $O\left(n^{4} \log n\right)$.

This arrangement needs to be augmented further to handle lines perpendicular to faces of P correctly. Lemma 9 implies that for any line l perpendicular to a face f of P, P is only castable if f is removable with respect to l. For each face f of P, the arrangement A contains at least three lines perpendicular to f that bound the black region of f. Furthermore, the arrangement A contains every line touching four given lines or touching three given lines, where the third line is touched at infinity. Hence, G already contains all the nodes that represent lines perpendicular to faces of P.

It remains to label the faces of the new graph G we constructed. To label every face of G, traverse G in depth-first order. We store all the counters explained in Section 4.1 and an additional counter c of the number of far wedges of reflex edges perpendicular to lines in f_{G} that intersect the lines in f_{G}. This counter can be updated in constant time, if we store three boolean values
with each reflex edge e : one value indicating whether the current line is in the near wedge of e, one value indicating whether the current line is in the far wedge of e, and one value indicating whether the current line is perpendicular to e. Furthermore, we store a boolean variable indicating whether the lines in f_{G} are perpendicular to a face f of P. If the lines represented by f_{G} are not perpendicular to any face of P, simply proceed as in Section 4.1. Initialize the counters once in $O(n)$ time and update them in constant time per face. After subtracting c from the total number of black regions for f_{G}, we label f_{G} as valid iff the total number of black regions equals zero. If the lines represented by f_{G} are perpendicular to a face f of P, it is required to test whether f is removable with respect to the lines represented by f_{G}. For this purpose, we need to construct a planar arrangement for each face of P. Then, if the total number of black regions computed before equals zero, we need to look in the planar arrangement whether f is removable with respect to l.

For each set of faces F of P with $f \in F$ has inner normal $\pm \vec{n}$, we construct a planar arrangement that subdivides a plane π with inner normal \vec{n} into points $l^{\prime}=l \cap \pi$ that are intersections of lines l in direction \vec{n}, such that each $f \in F$ is removable with respect to l and points $l^{\prime}=l \cap \pi$ that are intersections of lines l in direction \vec{n}, such that $\exists f \in F$ that is not removable with respect to l. Hence, every point l^{\prime} in the plane π represents the line l perpendicular to π that intersects π in l^{\prime}. To subdivide π into valid and invalid regions, several steps are required. First, the $O(n)$ lines bounding black regions of P are projected to π. The planar arrangement has complexity $O\left(n^{2}\right)$. Every face of this arrangement can be labeled as black or non-black region, respectively, in $O\left(n^{2}\right)$ time by walking through the arrangement and maintaining a counter of all intersected black regions using a similar technique as explained in Theorem 3. For every face of the arrangement labeled non-black, we need to test for each $f \in F$ whether f is removable with respect to lines represented by that face. Let p_{1} and p_{2} denote two arbitrary points inside the same face labeled as non-black of the arrangement. Since p_{1} and p_{2} are in the same face of the arrangement, all the faces of P have the same valid orientation with respect to the two lines represented by p_{1} and p_{2}, that is, the faces are either removable in cw orientation with respect to both lines, removable in ccw orientation with respect to both lines, or need to be split with respect to both lines. Hence, if the algorithm described in Lemma 5 is used to determine whether f is removable with respect to the line represented by p_{1} and p_{2}, respectively, all the edges of f are labeled in the same way in the first step. Hence, the two transformed polar planes with origins p_{1} and p_{2}, respectively, have the same structure. Although the actual distances to p_{1} and p_{2} are different, the same sequence of monotone curves with monotone derivatives occurs in the transformed plane. Furthermore, if an edge is split, the actual split vertex is different, but the situation in the transformed plane remains the same. Therefore, f is removable with respect to p_{2} if and only if f is removable with respect to p_{1}. This implies that for each face of the arrangement labeled as non-black, we need to test one representative using the algorithm of Lemma 5 in $O(r \log r)$ time, where r is the number of edges of f. Let s denote the cardinality of F. In $O(r s \log r)$ time, it is tested whether each $f \in F$ is removable with respect to lines represented by one face of the arrangement labeled as non-black. Hence, it requires $O\left(n^{2} r s \log r\right)$ time to construct and label the arrangement for the faces F. This step needs to be done for each of the $O(n)$ sets of faces with codirectional inner normals. In the worst case, both s and r are in the order of n. This seems to imply that the time complexity to construct and label the arrangements for all faces of P is $O\left(n^{5} \log n\right)$. However, each face of P is represented in exactly one planar arrangement and each edge of P is shared by exactly two faces. Therefore, the sum of all the cardinalities and the sum of all the edges are both in the order of n. This implies that the total time complexity to construct and label the arrangements for all faces of
P is $O\left(n^{4} \log n\right)$.
This implies that in $O\left(n^{4} \log n\right)$ time, we can find and report all of the combinatorially distinct valid casting lines for P.

After computing A and G in $O\left(n^{4} \log n\right)$ preprocessing time, it is possible to perform line location in A, i.e. answer the question whether a given line l is a valid casting line for P. A query in A requires $O(n)$ time [18]. If the face of A contains the information that l is perpendicular to a set F of faces of P, it is necessary to query the arrangement induced by F to determine whether each $f \in F$ is removable with respect to l. It is possible to determine $l^{\prime}=\pi \cap l$ in constant time and to determine the face of the arrangement induced by F that contains l^{\prime} in $O(\log n)$ time [17]. Hence, it takes $O(n+\log n)=O(n)$ time to report whether P is castable with respect to l. Note that this implies that we can report faster whether P is castable with respect to l than without preprocessing (see Theorem 2). However, a query time of $O(\log n)$ is preferable. Hence, we use another approach to preprocess space for fast line location.

4.2.2 Preprocessing space for fast line location

In this section, we preprocess P in time $O\left(n^{7+\epsilon}\right)$ in a way that allows to answer whether a query line is a valid casting line for P in time $O(\log n)$.

As before, consider all of the planes bounding the black regions induced by P and their $O(n)$ intersecting lines. Again, we construct an arrangement A by representing every line as a hyperplane in Plücker space. This arrangement now needs to be augmented to contain all of the lines perpendicular to faces and reflex edges of P.

First, consider all of the lines perpendicular to a given face f with normal vector \vec{n} of P. A line is perpendicular to f if and only if the direction of the line is parallel to \vec{n}. Remember that a line in Plücker space is specified by $\left[l_{0}, l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right]$, where $\overrightarrow{l_{n}}=\left[l_{0},-l_{1}, l_{2}\right]^{T}$ is the normal vector of the plane passing through the line l and the origin and $\overrightarrow{l_{d}}=\left[l_{3}, l_{4}, l_{5}\right]^{T}$ is the direction of the oriented line l. Hence, all the lines l perpendicular to f satisfy Equation (1) and the following equation:

$$
\begin{equation*}
\overrightarrow{l_{d}} \times \vec{n}=\mathbf{0} . \tag{3}
\end{equation*}
$$

Equation (3) can be written as three linear equations and the three linear equations represent three hyperplanes in Plücker space. Hence, any point in Plücker space that is located on the intersection of the three hyperplanes specified by Equation (3) and that respects Equation (1) represents a line that is perpendicular to f.

Second, consider all of the lines perpendicular to a given reflex edge e in direction \vec{d} of P. A line is perpendicular to e if and only if the direction of the line is perpendicular to \vec{d}. Hence, all the lines l perpendicular to e satisfy Equation (1) and the following linear equation:

$$
\begin{equation*}
\overrightarrow{l_{d}} \cdot \vec{d}=l_{3} d_{x}+l_{4} d_{y}+l_{5} d_{z}=0 \tag{4}
\end{equation*}
$$

where $\vec{d}=\left[d_{x}, d_{y}, d_{z}\right]^{T}$. Equation (4) represents one hyperplane in Plücker space. Hence, any point in Plücker space that is located on the hyperplane specified by Equation (4) and that respects Equation (1) represents a line that is perpendicular to e.
Theorem 6. A polyhedron P with combinatorial complexity n can be preprocessed in $O\left(n^{7+\epsilon}\right)$ time into a data structure of size $O\left(n^{6+\epsilon}\right)$, such that for any given line l, we can decide in $O(\log n)$ time if P is castable with respect to l.

Proof. As before, we build an arrangement A of hyperplanes corresponding to lines in Plücker space. The hyperplanes that are necessary correspond to all of the intersection lines of planes bounding the black region induced by P. Furthermore, the hyperplanes represented by Equation (3) for every face of P and the hyperplane represented by Equation (4) for every reflex edge of P must be contained in the arrangement A. Hence, inserting three hyperplanes into A for every face f of P ensures that lines perpendicular to f are classified correctly. Furthermore, inserting one hyperplane into A for every reflex edge e of P ensures that lines perpendicular to e are classified correctly.

Hence, using the same technique as in Section 4.1, the 6 -dimensional arrangement A of the $O(n)$ lines bounding black regions induced by P, the $O(n)$ lines bounding regions of lines perpendicular to faces of P, and the $O(n)$ lines bounding regions of lines perpendicular to reflex edges of P can be constructed in time $O\left(n^{6}\right)$.

Once A is constructed, every cell of A needs to be labeled as an equivalence class of valid or invalid casting lines for P. This can be done using the same technique as in the proof of Theorem 5 in time $O\left(n^{6}\right)$. As in the proof of Theorem 5, a 2-dimensional arrangement is built and labeled as valid or invalid in time $O\left(n^{4} \log n\right)$ for each set of faces F of P with $f \in F$ has inner normal $\pm \vec{n}$. Each cell of A containing lines perpendicular to a set of faces F obtains as label a pointer to the planar arrangement of F in the labeling step.

A given query line l can be represented as a 6 -dimensional Plücker point. Since the query line is given, we know that the coordinates of the corresponding Plücker point satisfy equation (1). Using the method of Meiser, it is possible to determine the cell of A containing the Plücker point in time $O(\log n)$ after preprocessing the arrangement in time $O\left(n^{7+\epsilon}\right)$ into a data structure of size $O\left(n^{6+\epsilon}\right)$ [19]. Once the cell is known, the label of the cell can be retrieved in constant time. If the label points to a planar arrangement of faces perpendicular to l, the perpendicular projection of l on the plane π containing the planar arrangement is computed. Note that this intersection is a 2 -dimensional point p, since π is orthogonal to l. Now it is possible to find the cell of the planar arrangement containing p in $O(\log n)$ time [17] and to retrieve the label in constant time. Hence, it requires $O(\log n)$ time to determine if l is a valid casting line for P.

5 Conclusion and Future Work

We have studied the problem of clamshell casting in three dimensions. An algorithm was developed to solve the problem of determining whether a polyhedron of arbitrary genus with combinatorial complexity n is castable with respect to a given line in space with running time $O(n \log n)$. If the lines are restricted not to be perpendicular to a reflex edge or a face of the polyhedron, the algorithm's running time becomes $O(n)$. Furthermore, it is possible to report all of the valid casting lines for a given polyhedron in space in time $O\left(n^{4} \log n\right)$. If the lines are restricted not to be perpendicular to a reflex edge or a face of the polyhedron, the algorithm's running time becomes $O\left(n^{4} \alpha(n)\right)$. Alternatively, the polyhedron can be preprocessed in $O\left(n^{7+\epsilon}\right)$ time into a data structure of size $O\left(n^{6+\epsilon}\right)$, such that for any given line l, we can decide in $O(\log n)$ time if l is a valid casting line. The running time of this algorithm does not improve if the lines are restricted further, since the algorithm operates in 6-dimensional space.

The following interesting related problems require further research.

- The definition of clamshell casting only tests whether the cast of an object with piecewise linear boundary can be opened by an infinitesimally small angle without breaking the object
or the cast. To physically manufacture the object, it is required that the cast can be opened by a sufficiently large angle to remove the object from the cast without breaking the object or the cast. This problem is difficult, since the object can be removed from the cast by an arbitrary sequence of transformations.
- The boundary of the object is defined to be the cast. In case of rotations around infinitesimally small angles, this model is sufficient. However, when considering larger angles of rotations, the thickness of the cast has an influence on the maximum angle of rotation that does not break the object or the cast. Hence, the cast needs to be assigned a thickness.
- The control of the physical casting machinery is imperfect. This yields to surface defects if the cast of the object slides along the boundary of the object. The algorithms we presented should therefore be extended to determine whether an object is castable in a way that the cast does not slide along the boundary of the object.
- Since many objects do not have a piecewise linear boundary, the algorithms should be extended to handle more general object boundaries.

References

[1] H. Ahn, O. Cheong, and R. van Oostrum. Casting a polyedron with directional uncertainty. Computational Geometry, 26:129-141, 2003.
[2] H. Ahn, M. de Berg, P. Bose, S. Cheng, D. Halperin, J. Matousek, and O. Schwarzkopf. Separating an object from its cast. Computer-Aided Design, 34:547-559, 2002.
[3] Hans-Jochen Bartsch. Taschenbuch Mathematischer Formeln, 18. Auflage. Fachbuchverlag Leipzig, 1999.
[4] P. Bose. Geometric and computational aspects of manufacturing processes. Ph.D. thesis, McGill University, 1994.
[5] P. Bose, D. Bremner, and M. van Kreveld. Castability of simple polyhedra. Algorithmica: Special Issue on Manufacturing, 19:84-113, 1997.
[6] P. Bose and M. Kreveld. Generalizing monotonicity: On recognizing special classes of polygons and polyhedra. International Journal of Computational Geometry, 15:591-608, 2005.
[7] P. Bose, P. Morin, M. Smid, and S. Wuhrer. Rotational clamshell casting in two dimensions. Technical Report TR0603, Carleton University, 2006.
[8] P. Bose and G. Toussaint. Geometric and computational aspects of manufacturing processes. Computers and Graphics(invited paper), 18(4):487-497, 1994.
[9] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Lines in space-combinators, algorithms and applications. In STOC '89: Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 382-393. ACM Press, 1989.
[10] B. Chazelle, H. Edelsbrunner, L. J. Guibasand M. Sharir, and J. Stolfi. Lines in space : Combinatorics and algorithms. Algorithmica, 15:428-447, 1996.
[11] T. Corman, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms Second Edition. The MIT Press, 2001.
[12] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry Algorithms and Applications Second Edition. Springer-Verlag, 1991.
[13] H. Edelsbrunner, J. O'Rourke, and R. Seidel. Constructing arrangements of lines and hyperplanes with applications. SIAM Journal on Computing, 15:341-363, 1986.
[14] J. Goodman and J. O'Rourke. Handbook of Discrete and Computational Geometry, Second Edition. Chapman \& Hall CRC, 2004.
[15] K. Hoffmann, K. Mehldorn, P. Rosenstiehl, and R. Tarjan. Sorting jordan sequences in linear time using level-linked search trees. Information and Control, 68:170-184, 1986.
[16] K. Hui and S. Tan. Mold design with sweep operations - a heuristic search approach. Computer Aided Design, 24:81-91, 1992.
[17] D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing, 12(1):2835, 1983.
[18] M. McKenna and J. O'Rourke. Arrangements of lines in 3-space: A data structure with applications. In Proceedings of the fourth annual symposium on Computational geometry, pages 371 - 380, New York, NY, USA, 1988. ACM Press.
[19] S. Meiser. Point location in arrangements of hyperplanes. Information and Computation, 106:286-303, 1993.
[20] Julius Plücker. Neue Geometrie des Raumes. B.G. Teubner, Leipzig, 1868.
[21] A. Rosenbloom and D. Rappaport. Moldable and castable polygons. Computational GeometryTheory Appl., 4:219-233, 1994.
[22] H. Seifert and W. Threlfall. A textbook of topology. Academic Press, 1980.
[23] Jorge Stolfi. Oriented Projective Geometry - A Framework for Geometric Computations. Academic Press Professional, Inc., 1991.

[^0]: *The authors would like to thank Anil Maheshwari and NSERC for financially supporting this research

