
I/O Efficient Sorting
in the Cache-Oblivious Model:

Quicker than Quick

Dana Jansens
Carleton University



Overview

● Previous Work

● Introduce Cache-Oblivious Model

● Sorting Algorithm: Funnelsort

● Funnelsort in multi-core environment



Previous Work

● Cache-Oblivious Algorithms
– Introduced in 1999 – Frigo, Leiserson, Prokop, 

Ramachandran
– Cache Oblivious Model
– Funnelsort algorithm

● Improvements on Funnelsort
– Published in 2004 – Brodal, Fagerberg, Vinther
– Engineering a cache-oblivious sorting algorithm
– Empirical results with the algorithm



Previous Work

● Cache-Oblivious Algorithms
– Introduced in 1999 – Frigo, Leiserson, Prokop, 

Ramachandran
– Cache Oblivious Model
– Funnelsort algorithm

● Improvements on Funnelsort
– Published in 2004 – Brodal, Fagerberg, Vinther
– Engineering a cache-oblivious sorting algorithm
– Empirical results with the algorithm



Previous Work

● Cache-Oblivious Algorithms
– Introduced in 1999 – Frigo, Leiserson, Prokop, 

Ramachandran
– Cache Oblivious Model
– Funnelsort algorithm

● Improvements on Funnelsort
– Published in 2004 – Brodal, Fagerberg, Vinther
– Engineering a cache-oblivious sorting algorithm
– Empirical results with the algorithm



Cache Oblivious Model

● Tool for analyzing algorithms
– should impart a realistic view of performance

● Count I/Os
– performed between CPU and main memory

● Why is this I/O important ?

● Where did this approach come from ?



Cache Oblivious Model

● Tool for analyzing algorithms
– should impart a realistic view of performance

● Count I/Os
– performed between CPU and main memory

● Why is this I/O important ?

● Where did this approach come from ?



Cache Oblivious Model

● Tool for analyzing algorithms
– should impart a realistic view of performance

● Count I/Os
– performed between CPU and main memory

● Why is this I/O important ?

● Where did this approach come from ?



Cache Oblivious Model

● Tool for analyzing algorithms
– should impart a realistic view of performance

● Count I/Os
– performed between CPU and main memory

● Why is this I/O important ?

● Where did this approach come from ?



RAM Model  (Random Access)

● Standard model for measuring 
algorithms

● Count CPU operations

● Generally a good measure of performance

● Makes a big assumption !



RAM Model  (Random Access)

● Standard model for measuring   
algorithms

● Count CPU operations

● Generally a good measure of performance

● Makes a big assumption !



RAM Model  (Random Access)

● Standard model for measuring     
algorithms

● Count CPU operations

● Generally a good measure of performance

● Makes a big assumption !



RAM Model  (Random Access)

● Standard model for measuring   
algorithms

● Count CPU operations

● Generally a good measure of performance

● Makes a big assumption !



RAM Model  (Random Access)

● RAM Model assumption:



RAM Model  (Random Access)

● RAM Model assumption:

– Identical time to access to any memory 
location



RAM Model  (Random Access)

● RAM Model assumption:

– Identical time to access to any memory 
location



RAM Model  (Random Access)

● RAM Model assumption:

– Identical time to access to any memory 
location



RAM Model  (Random Access)

● RAM Model assumption:

– Identical time to access to any memory 
location



RAM Model  (Random Access)

● RAM Model assumption:

– Identical time to access to any memory 
location



RAM Model  (Random Access)

● RAM Model assumption:

– Identical time to access to any memory 
location



RAM Model  (Random Access)

● RAM Model assumption:

– Identical time to access to any memory 
location



RAM Model  (Random Access)

● RAM Model assumption:

– Identical time to access to any memory 
location



RAM Model  (Random Access)

● RAM Model assumption:

– Identical time to access to any memory 
location



RAM Model  (Random Access)

● RAM Model assumption:

– Identical time to access to any memory 
location

–Memory access patterns don't affect 
performance



RAM Model  (Random Access)

● However..

Memory access patterns do affect 
performance.



RAM Model  (Random Access)

● However..

Memory access patterns do affect 
performance.

● Want to measure the efficiency of an 
algorithm's memory use.



EM Model  (External Memory)

● I/O very important when it is slow

● External disks are much slower than   
CPU
–Hard drives

● Want to make as few trips to disk as 
possible



EM Model  (External Memory)

● I/O very important when it is slow

● External disks are much slower than 
CPU
–Hard drives

● Want to make as few trips to disk as 
possible



EM Model  (External Memory)

● I/O very important when it is slow

● External disks are much slower than   
CPU
–Hard drives

● Want to make as few trips to disk as 
possible



EM Model  (External Memory)

● Disk transfers done in blocks

● B = block size

Disk Memory



EM Model  (External Memory)

● Disk transfers done in blocks

● B = block size

Disk Memory

5



EM Model  (External Memory)

● Disk transfers done in blocks

● B = block size

Disk Memory

5

5



EM Model  (External Memory)

● I/O Efficiency

Analyze how many blocks are transferred 
between disk and memory.

● Big-O notation
–Counts the number of I/O block 

transfers



EM Model  (External Memory)

● I/O Efficiency

Analyze how many blocks are transferred 
between disk and memory.

● Big-O notation
–Counts the number of I/O block 

transfers



Cache-Oblivious Model

● Adds ideas from the EM model to the 
RAM model

● Measures I/O block transfers
–between main memory and the 

processor cache



Cache-Oblivious Model

● Adds ideas from the EM model to the 
RAM model

● Measures I/O block transfers
–between main memory and the 

processor cache



Cache-Oblivious Model

               

CPU

Mem

Disk

EM Model

CPU

Cache

Mem

Cache-Oblivious
Model



Cache-Oblivious Model

● But memory much faster than disk

● Modern CPUs are getting faster relative to 
memory

● Memory feels “farther away” from the 
CPU

● Multiple cores compete for memory 
access



Cache-Oblivious Model

● But memory much faster than disk

● Modern CPUs are getting faster relative 
to memory

● Memory feels “farther away” from the 
CPU

● Multiple cores compete for memory 
access



Cache-Oblivious Model

● But memory much faster than disk

● Modern CPUs are getting faster relative to 
memory

● Memory feels “farther away” from the 
CPU

● Multiple cores compete for memory 
access



Cache-Oblivious Model

● But memory much faster than disk

● Modern CPUs are getting faster relative to 
memory

● Memory feels “farther away” from the 
CPU

● Multiple cores compete for memory 
access



Cache-Oblivious Model

● Desire optimal work complexity
– Same as RAM model

● Desire optimal I/O complexity
– Same as EM model

● Algorithm is unaware of the cache     
block size (B)
– Should be optimal for any cache block size



Cache-Oblivious Model

● Desire optimal work complexity
– Same as RAM model

● Desire optimal I/O complexity
– Same as EM model

● Algorithm is unaware of the cache     
block size (B)
– Should be optimal for any cache block size



Cache-Oblivious Model

● Desire optimal work complexity
– Same as RAM model

● Desire optimal I/O complexity
– Same as EM model

● Algorithm is unaware of the cache     
block size (B)
– Should be optimal for any block size



Funnelsort

● Sorting algorithm

● Similar to merge sort

● Both work and I/O optimal
–While being cache oblivious
–ɵ(n log n) work
–ɵ((n log n) / B) I/Os



Funnelsort

● Sorting algorithm

● Similar to merge sort

● Both work and I/O optimal
–While being cache oblivious
–ɵ(n log n) work
–ɵ((n log n) / B) I/Os



Funnelsort

● Sorting algorithm

● Similar to merge sort

● Both work and I/O optimal
–While being cache oblivious
–ɵ(n log n) work
–ɵ((n log n) / B) I/Os



Funnelsort

● Simple algorithms run faster
–Less code, less CPU overhead

● Quicksort is very simple and very quick  
in practice
– std::sort() in C++ STL

● Quicksort is not I/O optimal



Funnelsort

● Simple algorithms run faster
–Less code, less CPU overhead

● Quicksort is very simple and very quick 
in practice
– std::sort() in C++ STL

● Quicksort is not I/O optimal



Funnelsort

● Simple algorithms run faster
–Less code, less CPU overhead

● Quicksort is very simple and very quick  
in practice
– std::sort() in C++ STL

● Quicksort is not I/O optimal



Funnelsort

Can Funnelsort outperform
Quicksort in practice?



Funnelsort

Can Funnelsort outperform
Quicksort in practice?

... Yes.



Funnelsort

● How does it work ?

–Split the input into smaller groups
● Split N elements into N^(1/d) groups of size 

N^(1-1/d)

–Recursively sort each group

–Merge the sorted groups together



Funnelsort

● Looks a lot like standard merge sort  



Funnelsort

● Do merging in an I/O optimal way



Funnelsort - Merging Process

● Merge together k groups of sorted input

● Use a tool called k-merger

● Tree structure

● Sorts from the leaves of the tree up to    
the root



Funnelsort - Merging Process

● Merge together k groups of sorted input

● Use a tool called k-merger

● Tree structure

● Sorts from the leaves of the tree up to    
the root



Funnelsort - Merging Process

● Merge together k groups of sorted input

● Use a tool called k-merger

● Tree structure

● Sorts from the leaves of the tree up to    
the root



Funnelsort - Merging Process

● Merge together k groups of sorted input

● Use a tool called k-merger

● Tree structure

● Sorts from the leaves of the tree up to 
the root



Funnelsort - k-merger

● k-merger (k=8)

● Boxes are 
buffers

● Each node 
merges into 
buffer above it



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● Simple rules

● Start at the root

● Merge until:
– input is empty 

or
–output is full



Funnelsort - k-merger

● And so on..

● Until input 
buffers are 
empty

● Output buffer is 
full



Funnelsort – I/O cost

● I/O cost to sort one element:

–Sum of I/Os at each merge step



Funnelsort – I/O cost

● Using a k-merger (merging m elements)
–Each element costs O(log m / B) I/O's

● m is the size of the inputs being merged



Funnelsort – I/O cost

● Total I/O cost to sort one element:
–O((log N) / B) I/O's

● Total I/O cost to sort N elements:
–O((N log N) / B) I/O's



Funnelsort – I/O cost

● I/O cost to sort one element:
–Sum of I/Os at each merge step

● Total cost to sort 1 element is:

O((d log n) / B)



Comparison

● Comparison with std:sort() from g++ 
4.1.2 on Fedora 8

● Single quad-core processor

● 4KB CPU cache

● 8000MB memory (488 MB data set)



Comparison

● Sorting with a single thread
–Quicksort is able to beat Funnelsort
–By factor of 1.20
– I/O isn't the largest factor

● Sorting with 4 threads
–Funnelsort is faster than Quicksort
–By factor of 1.06



Comparison

● With four cores competing:

–Funnelsort improved relative to 
Quicksort by 22%

–Funnelsort was able to outperform 
Quicksort



Comparison

● Fastest sorting methods
–Using a bucket sort to merge results 

between processors

1)Funnelsort with 4 cores (5.10s)

2)Quicksort with 4 cores (5.59s)

3)Quicksort with 1 core (10.72s)

4)Funnelsort with 1 core (12.51s)



Conclusion

● When I/O access is limited, I/O efficiency 
becomes important

● Multi-core processors highlight the need 
for I/O efficient algorithm design
–Even when data sets fit entirely inside 

main memory

● Utilizing multiple cores with I/O in mind 
provides the best solutions


