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Funnelsort

● How does it work ?

–Split the input into smaller groups
● Split N elements into N^(1/d) groups of size 

N^(1-1/d)

–Recursively sort each group

–Merge the sorted groups together
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Funnelsort

● Do merging in an I/O optimal way
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Funnelsort - k-merger

● k-merger (k=8)

● Boxes are 
buffers

● Each node 
merges into 
buffer above it
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Funnelsort - k-merger

● And so on..

● Until input 
buffers are 
empty

● Output buffer is 
full
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Funnelsort – I/O cost

● I/O cost to sort one element:
–Sum of I/Os at each merge step

● Total cost to sort 1 element is:

O((d log n) / B)



Comparison

● Comparison with std:sort() from g++ 
4.1.2 on Fedora 8

● Single quad-core processor

● 4KB CPU cache

● 8000MB memory (488 MB data set)



Comparison

● Sorting with a single thread
–Quicksort is able to beat Funnelsort
–By factor of 1.20
– I/O isn't the largest factor

● Sorting with 4 threads
–Funnelsort is faster than Quicksort
–By factor of 1.06



Comparison

● With four cores competing:

–Funnelsort improved relative to 
Quicksort by 22%

–Funnelsort was able to outperform 
Quicksort



Comparison

● Fastest sorting methods
–Using a bucket sort to merge results 

between processors

1)Funnelsort with 4 cores (5.10s)

2)Quicksort with 4 cores (5.59s)

3)Quicksort with 1 core (10.72s)

4)Funnelsort with 1 core (12.51s)



Conclusion

● When I/O access is limited, I/O efficiency 
becomes important

● Multi-core processors highlight the need 
for I/O efficient algorithm design
–Even when data sets fit entirely inside 

main memory

● Utilizing multiple cores with I/O in mind 
provides the best solutions


